

Application Development
with Qt Creator

A fast-paced guide for building cross-platform
applications using Qt and Qt Quick

Ray Rischpater

 BIRMINGHAM - MUMBAI

Application Development with Qt Creator

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1131113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-231-9

www.packtpub.com

Cover Image by Siddhart Ravishankar (sidd.ravishankar@gmail.com)

Credits

Author
Ray Rischpater

Reviewers
Lee Zhi Eng

Niels Holst

Kamakshi Subramaniam

Acquisition Editors
Vinay Argekar

Aarti Kumaraswamy

Commissioning Editor
Sruthi Kutty

Technical Editors
Hardik B. Soni

Krutika Parab

Manan Badani

Pankaj Kadam

Copy Editors
Sayanee Mukherjee

Laxmi Subramanian

Project Coordinator
Sageer Parkar

Proofreader
Linda Morris

Indexers
Mehreen Deshmukh

Tejal R. Soni

Graphics
Ronak Dhruv

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Ray Rischpater is an engineer and author with over 20 years' experience writing
about and developing for computing platforms.

During this time, he has participated in the development of Internet technologies and
custom applications for Java ME, Qualcomm BREW, Apple iPhone, Google Android,
Palm OS, Newton, and Magic Cap, as well as several proprietary platforms.
Presently, he's employed as a senior engineer at Microsoft in Mountain View,
working on mapping and data visualization.

When not writing for or about mobile platforms, he enjoys hiking and photography
with his family and friends in and around the San Lorenzo Valley in central
California. When he's able, he also provides a public service through amateur radio
as the licensed Amateur Extra station KF6GPE.

The books he's written so far include:

•	 Microsoft Mapping: Geospatial Development with Bing Maps and C# (with
Carmen Au, Apress, 2013)

•	 Beginning Nokia Apps Development (with Daniel Zucker, Apress, 2010)
•	 Beginning Java ME Platform (Apress, 2008)
•	 Wireless Web Development, Second Edition (Apress, 2004)
•	 eBay Application Development (Apress, 2004)
•	 Software Development for the QUALCOMM BREW Platform (Apress, 2003)
•	 Wireless Web Development, First Edition (Apress, 2002)
•	 Internet Appliances: A Wiley Tech Brief (John Wiley & Sons, 2001)
•	 Advanced Palm Programming (with Steve Mann, John Wiley & Sons, 2000)
•	 Palm Enterprise Applications: A Wiley Tech Brief (John Wiley & Sons, 2000)

He holds a bachelor's degree in pure mathematics from the University of California,
Santa Cruz and is a member of the IEEE, ACM, and ARRL.

Acknowledgments

First, I'd like to thank Sruthi Kutty for approaching me about the idea of writing
an introductory book about Qt Creator. Second, I'd like to thank Sageer Parkar for
shepherding the project throughout the process at Packt, making my first experience
with Packt Publishing a painless one. I was fortunate to have several technical
reviewers and editors on the project who gave their time graciously to improve
the book. Finally, I'd like to thank my wife and son for their patience with me as I
undertook yet another book.

About the Reviewers

Lee Zhi Eng is a 3D artist-turned-programmer who worked as a game artist and
game programmer in several local game studios in his country, before becoming a
contractor and a part time lecturer at a local university, teaching game development
subjects, particularly related to Unity Engine and Unreal Development Kit. You can
find more information about him at http://www.zhieng.com.

Niels Holst graduated from the University of Copenhagen, Denmark with a PhD
in Biology. He currently works at Aarhus University, Denmark where he applies
Computer Science to solve problems in Applied Ecology. He is a leader of the
Universal Simulator open source project.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Table of Contents
Preface	 1
Chapter 1: Getting Started with Qt Creator	 7

Downloading Qt Creator	 7
Finding your way around Qt Creator	 9
Your first application – Hello World	 10

Hello World using the Qt GUI library	 12
Hello World using Qt Quick	 16
Summary	 19

Chapter 2: Building Applications with Qt Creator	 21
Getting started – our sample library	 21
Learning the landscape – the Build menu and .pro files	 24
Linking against our sample library	 27
Getting lost and found again – debugging	 31

Setting breakpoints and stepping through your program	 33
Fine-grained control of breakpoints	 36
Examining variables and memory	 37
Examining the call stack	 39

The Projects pane and building your project	 41
A review – running and debugging your application	 42
Summary	 43

Chapter 3: Designing Your Application with Qt Designer	 45
Code interlude – signals and slots	 46
Creating forms in Qt Designer	 49

Creating the main form	 50
Using application resources	 54

Instantiating forms, message boxes, and dialogs in your application	 55

Table of Contents

[ii]

Wiring the Qt GUI application logic	 59
Learning more about Qt GUI widgets	 63

Code interlude – Qt Quick and QML syntax	 63
Creating Qt Quick applications in
Qt Designer	 66

Creating a reusable button	 67
The calculator's main view	 70
Learning more about Qt Quick and QML	 73

Summary	 74
Chapter 4: Localizing Your Application with Qt Linguist	 75

Understanding the task of localization	 75
Marking strings for localization	 76
Localizing your application with Qt Linguist	 77
Including localized strings in your application	 80
Localizing special things – currencies and dates with QLocale	 81
Summary	 82

Chapter 5: Performance Optimization with Qt Creator	 83
The QML performance analyzer	 83

QtSlowButton – a Qt Quick application in need of performance tuning	 84
Finding memory leaks with Valgrind	 88

QtLeakyButton – a Qt C++ application in need of memory help	 89
Summary	 92

Chapter 6: Developing Mobile Applications with Qt Creator	 93
A mobile software development primer	 93

User attention is at a premium	 94
Computational resources are at a premium	 95
Network resources are at a premium	 96
Storage resources are at a premium	 96
To port or not to port?	 97
A word on testing	 98

Setting up Qt Creator for Android	 98
Downloading all the pieces	 99
Setting up the environment variables	 99
Finishing the Android SDK installation	 100
Configuring Qt Creator	 102
Building and running your application	 103

Summary	 104

Table of Contents

[iii]

Chapter 7: Qt Tips and Tricks	 105
Writing console applications with Qt Creator	 105
Integration with version control systems	 107
Configuring coding style and coding format options	 109
Building from the command line	 111
Setting Qt Quick window display options	 112
Learning more about Qt	 114
Summary	 116

Index	 117

Preface
Whether you're just getting started with programming, or you've settled on Qt as the
GUI toolkit for your project, Qt Creator is a great choice for an Integrated Development
Environment (IDE)! In this book, we work to help you make the most of Qt Creator,
showing you almost every facet of using Qt Creator, from its configuration through
compiling and debugging applications, along with numerous tips and tricks. Along
the way, you gain valuable experience not just with Qt Creator as an IDE, but with
Qt and Qt Quick as well. After reading this book, you'll be able to:

•	 Edit, compile, debug, and run C++ applications using Qt Creator, opening
a path to build state-of-the-art console and GUI applications with Qt and
the Standard Template Library (STL)

•	 Edit, compile, debug, and run Qt Quick applications using Qt Creator,
giving you access to one of the most advanced declarative GUI authoring
environments anywhere

•	 Design GUI applications using Qt Designer to build either traditional
widget-based or Qt Quick applications

•	 Analyze the memory and runtime performance of your Qt applications,
and make improvements, and fix defects

•	 Provide localized versions of your application, so that you can deploy
it all over the world in different languages

•	 Use Qt Quick and Qt Widgets to write mobile applications for platforms
such as Google Android

Preface

[2]

What this book covers
This book is divided into seven chapters, which you should plan on reading
in order, especially if you're new to Qt Creator and Qt programming in general.
These chapters are:

Chapter 1, Getting Started with Qt Creator, explains how to download and install
Qt Creator, as well as edit simple applications to test your installation.

Chapter 2, Building Applications with Qt Creator, explains how to compile, run, and
debug your application using Qt Creator. You will learn how Qt Creator integrates
with both the GNU debugger and the Microsoft console debugger to provide
breakpoints, memory inspection, and other debugging help.

Chapter 3, Designing Your Application with Qt Designer, explains how to use the
drag-and-drop GUI designer that is part of Qt Creator, to build both Qt widget-based
and Qt Quick applications.

Chapter 4, Localizing Your Application with Qt Linguist, explains how to manage
resource strings for different locales, letting you build your application with different
languages in different locales.

Chapter 5, Performance Optimization with Qt Creator, explains how to use Qt Creator
to examine your Qt Quick application's runtime performance, as well as how to
perform memory profiling of your application with Valgrind, an open source
diagnostic tool.

Chapter 6, Developing Mobile Applications with Qt Creator, gives a look at the exciting
arena of mobile software development, and shows how you can use what you've
learned in this book about Qt and Qt Creator to write applications for platforms such
as Google Android.

Chapter 7, Qt Tips and Tricks, covers tricks for using Qt and Qt Creator that will help
you use the Qt framework and the Qt Creator IDE efficiently.

What you need for this book
Qt and Qt Creator are cross-platform tools. Whether you're using a Windows
machine, a Macintosh using Mac OS X, or a workstation running Linux, you
probably have what you need. You should have a reasonable amount of disk space
(around 10 gigabytes is plenty) to install the whole Qt Creator IDE and Qt libraries,
and as with any software development environment, the more RAM you have, the
better (although I've run Qt Creator on netbooks running Ubuntu with a gigabyte
of RAM and survived!).

Preface

[3]

You should have a basic understanding of computer programming, and should be
prepared to write code in C++. Basic knowledge of JavaScript is helpful if you're
interested in programming with Qt Quick, but you can pick that up along the way
with little difficulty.

Who this book is for
I wrote this book for those who have little or no experience with Qt and Qt Creator,
who may be using it for the first time as part of a college class, an open source
project, or who just want to experiment with the platform and IDE.

I especially want to encourage you to read this book if you're a student using Qt
Creator in your university class on C++ programming! You should focus on the
first two chapters, and as much of the rest as you need for your course.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"For the name, enter HelloWorldConsole, and choose a path that makes sense for
you (or accept the default)."

A block of code is set as follows:

#include <QCoreApplication>
#include <iostream>
using namespace std;
int main(int argc, char *argv[])
{
 QCoreApplication a(argc, argv);
 cout << "Hello world!";
 return a.exec();
}

Preface

[4]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

import QtQuick 2.0
Rectangle {
 width: 360
 height: 360
 Text {
 text: qsTr("Hello World")
 anchors.centerIn: parent
 }
 MouseArea {
 anchors.fill: parent
 onClicked: {
 Qt.quit();
 }
 }
}

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Where it says Type Here, right-click and choose Remove menu bar."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with
Qt Creator

Qt Creator is the integrated software development environment that supports both
traditional C++ application development, as well as development using the Qt
project's libraries (collectively called "Qt", pronounced "cute"). In this chapter, we
will see everything we need to get started with Qt Creator:

•	 Where to download Qt Creator for Linux, Mac OS X, or Windows
•	 How to ensure that your basic configuration is running
•	 A quick look at a simple Qt GUI application, as well as a Qt Quick

application

Downloading Qt Creator
Qt, the cross-platform toolkit behind Qt Creator, has had a long and illustrious
history. Presently, a project of Digia, it has its own URL at qt-project.org and
has both commercial and noncommercial licenses available.

Getting Started with Qt Creator

[8]

To get started with the noncommercial version for free, head over to http://bit.
ly/13G4Jfr to see something similar to the following screenshot:

Downloading Qt Creator

One of the most popular platforms for application development with
Qt is Linux. On many Linux variants—notably Ubuntu, my personal
favorite—you can get Qt Creator using the package manager. On my
Ubuntu box, Qt Creator is just a sudo apt-get install qtcreator
command away. You'll get a version of Qt matched with your flavor of
Linux, although it might not be the latest and greatest build from Digia.

We can also download bits and pieces of Qt, such as just the runtime libraries,
or build Qt Creator from source. This typically requires that you already have a
compiler and basic development tools installed, and a basic understanding of qmake
and Qt's build configuration management system.

Some downloads include the C++ compiler and linker you need for your development;
others don't. For example, on Windows there's a variant that includes the MinGW tool
chain, so you have everything you need to build applications. However, you can also
download Qt Creator for Windows that uses the Microsoft Visual Studio compilers,
so, if you prefer using Visual Studio for your compilation and Qt Creator as your IDE,
that's also an option. On Mac OS X, you'll need to have Xcode and the command-line
development tools installed first; you can download Xcode from the Mac OS X App
Store, and then use Xcode to download the command-line development tools.

Chapter 1

[9]

Once the installer is downloaded, run it in the usual way. It'll launch an installation
wizard for your platform, and typically the installation takes about three or four
minutes. You'll want to have plenty of disk space. Qt Creator doesn't consume
that much disk space, but software development typically does; figure at least 500
megabytes for the tools and libraries, and budget a few gigabytes free on your main
drive for your source code, intermediate object files, debug symbols, and of course,
your compiled application. (This is especially important to plan for if you're running
Qt Creator on a virtual machine; make sure that the virtual hard drive for your
virtual machine image has plenty of disk space.) You should also ensure that your
development box has plenty of RAM; the more, the better. Qt Creator runs happily in
2 GB of RAM, but the compiler and linker used by Qt Creator can run a lot faster if it
has more RAM available.

Finding your way around Qt Creator
The following screenshot shows what you see the first time you launch Qt Creator.
Let's take a closer look at each portion of the screen:

The landing page of Qt Creator

Getting Started with Qt Creator

[10]

The main window, which currently shows the icons for IDE Overview, User
Interface, Building and Running an Example Application, and Start Developing,
is your workspace. Under normal conditions, this will be where you'll see the source
code for your application. Along the left-hand side are a series of icons that let you
select various views into your application. They are:

•	 The Welcome view shows basic information about Qt Creator
•	 The Edit view lets you edit the files that make up your application
•	 The Design view lets you use the Qt Designer to design the user interface

for your application
•	 The Debug view lets you debug your application while it's running,

including doing things like viewing memory and variables, setting
breakpoints, and stepping through your application

•	 The Projects view lets you adjust the build and link settings for your project
•	 The Analyze view lets you profile your application's runtime performance
•	 The Help view provides documentation about Qt Creator and the

Qt Framework

Below the Help view button in the previous screenshot you can see the active
project; when I took this screenshot, I had already created our first application.
Let's do that now.

Your first application – Hello World
In Qt Creator, choose New File or Project… from the File menu. Qt Creator will
present you with the New project wizard, which lets you choose the kind of project
you want to create, give it a name and so forth. To create our first application:

1.	 Choose New File or Project… if you haven't already.
2.	 Qt Creator presents you with a dialog that has a dizzying array of project

choices. Choose Application, then Qt Console Application, and click
on Choose….

3.	 Qt Creator asks you for a name and a path to the directory where you want
to store the files for the project. For the name, enter HelloWorldConsole,
and choose a path that makes sense for you (or accept the default). Then,
click on Next.

4.	 Qt Creator can support various kits and libraries against which to build an
application. Select the desktop Qt kit that should have been installed by
default, leaving both the Release and Debug choices checked. Then, click
on Next.

Chapter 1

[11]

5.	 In the next step, Qt Creator prompts you about version control for your
project. Qt Creator can use your installed version control clients to perform
change tracking for your project. For now, skip this and leave Add to version
control set to None and click on Finish.

Qt Creator creates your project and switches to the Edit view. In the source code
editor for the file main.cpp, enter the following code:

#include <QCoreApplication>
#include <iostream>

using namespace std;

int main(int argc, char *argv[])
{
 QCoreApplication a(argc, argv);

 cout << "Hello world!";

 return a.exec();
}

The QCoreApplication task handles the system startup for an application, and every
Qt Console app needs to create one and call its exec method, as part of the main
method. It sets up Qt's event handler and provides a bunch of porting helpers to
determine things such as your application directory, library paths, and other details.

For a console application, that's all you need: you can freely mix and match Qt classes
with the C++ standard library and Standard Template Library (although once you
master Qt's foundation classes, many STL constructs feel somewhat limiting).

Next, let's compile and run the application. There are several ways you can do
this. You can use any one of the following options:

•	 Hit F5 to build and run your application in the debugger
•	 Choose Start Debugging… from the Debug menu
•	 Click on the green Run arrow below the Help view button on the left

to run the application
•	 Click on the green Run arrow with the bug over the arrow to debug

the application

Getting Started with Qt Creator

[12]

If all you want to do is build the application, you can click on the
hammer icon below the Run and Debug icons.

When you choose one of these options, Qt Creator invokes the compiler and linker to
build your application. If you chose a debug option, Qt Creator switches to the Debug
view (which I will discuss in detail in the next chapter) as it starts your application.

Once the application starts, you'll see the Hello world! message in the console view.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

Hello World using the Qt GUI library
One of Qt's strengths is its rich collection of GUI elements you can use to create
windowed applications. Making a GUI application is similar, in principle, to making
a console application; instead of choosing Qt Console Application, choose Qt
Gui Application from the New dialog presented when you choose New File or
Project…. Try that now:

1.	 First, close the current file and project by choosing Close All Projects and
Editors from the File menu.

2.	 Next, choose New File or Project… again, and choose Qt Gui Application
from the first step of the wizard.

3.	 Walk through the wizard again, naming your project HelloWorldGui.
4.	 The New project wizard will prompt you for the name of the class

implementing your main window. Stick with the defaults given to you:
leave the subclass as QMainWindow, and the name as MainWindow.

Qt Creator creates a default subclass of the class providing the platform's basic
window handling in the mainform.h and mainform.cpp files, and creates a
form that will contain the widgets for your application's window. If you run the
application at this point, you'll see an empty window. Instead, double-click on the
Forms folder in the second pane of Qt Creator, and then double-click on the file
mainwindow.ui. Qt Creator switches to the Design view, and you'll see something
similar to the following screenshot:

Chapter 1

[13]

Qt Creator's Design view

To the left, is a list of layouts you can choose to organize widgets such as spacers,
views, containers, buttons, and other widgets. In the middle, is a view of the layout
of your application's main window, and to the right are panes with a hierarchy of
the objects in your main window and the properties of any item you click in the
main window.

While I explore Qt Designer more in Chapter 3, Designing Your Application with
Qt Designer, you can get a feel for using it to build a simple UI:

1.	 Where it says Type Here, right-click and choose Remove menu bar.
2.	 Drag a label (under Display Widgets in the left-hand pane) and drop

it on the window preview in the center pane.
3.	 Double-click on the label that appears and type, Hello world!.
4.	 Grab a corner of the label and resize it, so the entire text is shown.

You can also move it around in the window.

Getting Started with Qt Creator

[14]

5.	 Note that when you click on the label, the properties field in the lower right
corner updates to show the properties of your new label.

6.	 Drag a button (under Buttons in the left-hand pane) and drop it on the
window preview in the center pane.

7.	 Double-click on the button and change its text to Exit.
8.	 With the new button selected, change the objectName field in the property

browser to exitButton.
9.	 Right-click on the button and choose Go to slot…. A window appears with

a list of slots (for now, you can think of a slot as something that is triggered
on an action).

10.	 Choose clicked() from the list that appears.
11.	 Qt Creator returns to the Edit view for your mainindow.cpp file. Change it

to read:

#include "mainwindow.h"
#include "ui_mainwindow.h"
#include <QApplication>
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);
}

MainWindow::~MainWindow()
{
 delete ui;
}

void MainWindow::on_pushButton_clicked()
{
 QApplication::exit();
}

Before running your application, let's be sure we understand the implementation of
the MainWindow class. The MainWindow class's constructor loads the description of
the user interface for the main window and sets it up using the Qt Creator-generated
class Ui::MainWindow. The destructor deletes the implementation of the code layout,
and the on_pushButton_clicked method simply terminates the application by
calling the static method exit implemented by the QApplication class.

Chapter 1

[15]

Finally, we have to add the on_pushButton_clicked method declaration to
MainWindow.h. Double-click on that file in the browser on the left and make
sure it reads:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private slots:
 void on_pushButton_clicked();

private:
 Ui::MainWindow *ui;
};

#endif // MAINWINDOW_H

The key lines you need to add are:

private slots:
 void on_pushButton_clicked();

We'll learn more about signals and slots in the next chapter; for now, it's enough
to know that you're declaring a private function to be triggered when you click
on the button.

Run the application. It should open a single window with the text Hello World;
clicking on the Exit button in the window (or the close box on the upper-right
corner) should close the application. At this point, if you think you want to learn
more about Qt GUI widget applications, go ahead and try dragging other GUI items
to the window, or explore the help for Qt GUI applications by switching to the
Help view and choosing Qt Gui from the list of help items.

Getting Started with Qt Creator

[16]

Hello World using Qt Quick
Qt Quick is Qt's newer declarative framework for the user interface, and with
it it's incredibly easy to create fluid applications with animated transitions and
flowing user interfaces. Using Qt Quick, you describe your user interface using
QML, a JavaScript-like language that lets you declare the user interface elements
and how they relate; the Qt Quick runtime does most of the heavy lifting in the
implementation of your application.

By now, you can guess how to create a Qt Quick project: choose New File
or Project… from the File menu, and then click on Qt Quick 2 Application
(Built-in Types) and follow the wizard.

The wizard will ask no additional questions, and if you just walk through
the wizard, you end up with a simple application that actually displays
Hello World in its own window. Here's the code it supplies:

import QtQuick 2.0

Rectangle {
 width: 360
 height: 360
 Text {
 text: qsTr("Hello World")
 anchors.centerIn: parent
 }
 MouseArea {
 anchors.fill: parent
 onClicked: {
 Qt.quit();
 }
 }
}

If you know JavaScript, the syntax of this may look a little familiar, but it's still
different. The first line is an import statement; it indicates to the QML runtime what
classes should be available. At a minimum, all of your Qt Quick applications must
import QtQuick Version 2.0, as this one does.

The QML itself follows. It declares a parent rectangle of 360 × 360 pixels—that
determines the size of the application window. Inside the rectangle are two objects:
Text and MouseArea. The Text object is just a label with the text Hello World,
placed in the center of the rectangle. Note that the value of the text property
is actually the result of a function call, a call to the function qsTr, Qt's built-in
localization function, which looks at application resources to return the localized
version of Hello World if it's been provided.

Chapter 1

[17]

The MouseArea object takes user input and can execute functions based on that
input; it's sized to fit the parent (anchors.fill is set to parent) and responds
when clicked by executing the function assigned to the onClicked property. This
onClicked function just exits the application by calling the Qt class's quit function.

At this point, you can run the application in the usual way, and you'll see a window
with the text Hello World centered in it.

While the principles are similar, the Qt Quick Designer is very different from the
Qt GUI Designer; have a look at the following screenshot:

The Qt Quick Designer

There are some obvious similarities. Both designers show a list of things you can
add to a view, along with a hierarchy of objects in the view and the properties of
individual objects. However, there are far fewer Qt Quick widgets than Qt GUI
widgets, and the widgets in Qt Quick don't match the look and feel of the native
platform to nearly the same extent. By design, Qt GUI is meant for building
conventional applications that match the native platform, while Qt Quick is used for
creating device-independent applications with their own look and feel. For example,
you'd probably write an enterprise data collection application using Qt GUI, while
you'd create a media center application using Qt Quick.

Getting Started with Qt Creator

[18]

Using the designer is the same in both cases, however. Let's add another MouseArea
to the main view, and give it something to do:

1.	 Select main.qml in the list of files in Qt Creator and click on Design to see the
Design view.

2.	 On the Library pane, select items and scroll down until you see Rectangle.
Drag the rectangle to the center pane and drop it somewhere above the
Hello World label. You may need to resize the rectangle so that the label is
still visible.

3.	 With the rectangle selected in the window pane, under Colors, enter a color
for your rectangle.

4.	 Now drag a MouseArea object out of the Library pane, and drop it on your
new rectangle.

5.	 With the MouseArea selected, choose Layout and mouse over the layouts
until you see Fill to Parent. Click on it.

6.	 Go back to the Edit view and modify main.qml to look like the following:

import QtQuick 2.0

Rectangle {
 width: 360
 height: 360
 Text {
 id: text
 text: qsTr("Hello World")
 anchors.centerIn: parent
 }
 MouseArea {
 anchors.fill: parent
 onClicked: {
 Qt.quit();
 }

 Rectangle {
 id: rectangle1
 x: 80
 y: 7
 width: 200
 height: 124
 color: "#777777"

Chapter 1

[19]

 MouseArea {
 id: mousearea1
 anchors.fill: parent
 onClicked: text.text = qsTr("Hi there!")
 }
 }
 }
}

You should see that most of the changes were made by the Design view; it added
a rectangle inside the original MouseArea object, and another MouseArea inside
that. You should need to add the line giving the text element an ID of text, and
the onClicked handler to the new MouseArea object that you dragged out in the
Design view. The id property lets other QML access the text field by name (in this
case, its name is simply text), and the onClicked handler changes the contents of the
text item's text property to the text Hi there!.

It's worth making an observation about qsTr here: you don't have to add any text to
the application resources to get basic localization working. This is unlike most other
platforms, where localization occurs by providing keys to values in local files for
strings with a default value for the unlocalized strings.

Run the application. You'll see your rectangle above the text Hello World, and
clicking on the rectangle changes the text to read Hi there!.

Summary
Getting Qt Creator is easy; it's just a web download away, or on most Linux
platforms, it's an optional installation through the native package manager (although
the versions delivered by a package manager may be slightly older than what you
get from the Qt Project's website).

Qt Creator organizes its source code for you in projects; when you first launch it you
can either create a default project, or create a new project to contain the source code
and resources for your application. Inside Qt Creator are all the options you need
to compile and debug your application. In addition, it supports designer tools for
developing both Qt GUI and Qt Quick applications.

In the next, chapter we'll dig into the details of how to configure Qt Creator for
compiling and editing your code, including how to add source files to your project,
configure compiler and linker options, add dependencies to third-party libraries,
and so on.

Building Applications with
Qt Creator

The first thing you're going to want to do with Qt Creator is figure out how to add
source files and build (or debug) your project. This chapter is all about that—we'll
go over how to add files to your project, how to create libraries to your project, and
use the debugger and console logger. At the end of this chapter, you'll be driving
Qt Creator to develop your console applications like a pro.

Getting started – our sample library
This chapter's example code has two pieces: a library that defines a public function
and a console application that calls that function. Libraries are a great way to break
up your applications, and while this example is trivial, it also lets me show you
how to create a library and include it in your application.

I'm going to stretch your imagination a bit: let's pretend that you're responsible for
setting up a library of math functions. In this example, we'll only write one function,
factorial. You should remember the factorial function from introductory
programming; it's represented by a!, and is defined as:

•	 0! is 0
•	 1! is 1
•	 n! is n × (n-1)!

Building Applications with Qt Creator

[22]

This is a recursive definition, and we can code it this way:

unsigned long factorial(unsigned int n)
{
 switch(n)
 {
 case 0: return 0;
 case 1: return 1;
 default: return n * factorial(n-1);
 }
}

An alternate definition that avoids the cost of function calls is:
unsigned long factorial(unsigned int n)
{
 unsigned long result = 1;
 for(unsigned int i = n; i > 1; i--)
 {
 result *= i;
 }
}

Why did I pick the recursive definition? Three reasons: I think that it's clearer,
function-call performance overhead isn't a big deal in this example, and many
readers of this book may be using this book as part of introductory computer science
courses where recursion is taught and should be reinforced.

Let's begin by creating the library that implements our factorial function. To do this:

1.	 In Qt Creator, from the File menu, choose New File or Project….
2.	 Choose Libraries in the left-hand pane of the dialog and C++ Library from

the center pane.
3.	 Qt Creator can create dynamic libraries (DLLs, in Windows parlance), static

libraries, or plugins that can be shared between applications. We're going to
create a static library, so in the next screen choose Statically Linked Library,
and name it MathFunctions. Choose a reasonable path for the project.

4.	 In the next step of the wizard, leave the Qt version, Debug, and Release
items checked.

5.	 Libraries built by Qt Creator can rely on the Qt libraries themselves. Let's
allow this library to rely on QtCore, the core data structures for Qt; in the
Select Required Modules window, leave QtCore checked and click on Next.

Chapter 2

[23]

6.	 In the next window, you'll name the skeleton files that Qt Creator will add to
your project. Click on Next.

7.	 In the Project Management window, choose <None> for the version control
choice (we won't use version control for this project) and click on Finish.

8.	 Edit mathfunctions.h to include a static method declaration for our
factorial function:
#ifndef MATHFUNCTIONS_H
#define MATHFUNCTIONS_H

class MathFunctions
{
public:
 MathFunctions();

 static unsigned long int factorial(unsigned int n);
};

#endif // MATHFUNCTIONS_H

9.	 Open mathfunctions.cpp. You can do this one of two ways, by either
double-clicking on it in the Projects pane, or by right-clicking on the
factorial function and choosing Switch Header/Source. Write your
factorial function; mathfunctions.cpp should read:
#include "mathfunctions.h"

MathFunctions::MathFunctions()
{
}

unsigned long
MathFunctions::factorial(unsigned int n)
{
 switch(n)
 {
 case 0: return 0;
 case 1: return 1;
 default: return n * factorial(n-1);
 }
}

Building Applications with Qt Creator

[24]

10.	 Click on the Projects button on the left, and change the output path for the
Release and Debug builds to point to the same directory, by editing the
Build directory line under General, first for the Release and then for Debug
build configurations. To do this, remove the release and debug portions of
the directory path from the Build directory path. This way, when you build
your library, Qt Creator will place release and debug builds of your library
in a single folder instead of folders named release and debug, respectively.

As you write the code, note that Qt Creator prompts you at various stages
about things it can deduce from your header with automatic suggestions (called
autosuggest). For example, once you type MathFunc, it offers to autocomplete the
class name or the C pre-processor guard; you can select either using the mouse,
or just hit Enter to get the class name. Similarly, typing the double colons tells Qt
Creator you're trying to enter something in the MathFunctions class, and prompts
you with the MathFunctions class members; you can use the arrows to select
factorial and hit Enter, and it types that. Finally, typing an opening parenthesis
cues Qt Creator that you're defining a function, and prompts you with the arguments
to that function you defined in the header file. You'll see this autocompletion a lot
when you type code; it's a great way to learn Qt, too, because you can type a class
name or part of a function name and Qt Creator prompts you with helpful hints
along the way.

Before you continue, be sure you've built your library in both the release and debug
configurations. The easiest way to do this is to click on the build selector on the
bottom left and choose either Release or Debug, and then click on the hammer icon
to perform a build.

Learning the landscape – the Build menu
and .pro files
In the previous chapter, you learned how to build applications by hitting the
hammer button in the corner of Qt Creator's main window, or by starting the
debugger. To just build your library—or any application—you can either use the
hammer icon or various choices in the Build menu. The obvious choice is either
Build All or Rebuild All; choosing Build All recompiles only those files that Qt
Creator recognizes as those that need to be rebuilt; Rebuild All cleans the project
of all object files and rebuilds the entire project from scratch. In most cases, it's
sufficient to choose Build All, and that's what you want to do, because it's faster.
Sometimes you really do want to rebuild the whole project, when Qt's make system
can't reconcile all the dependencies (or, you've made changes to the dependencies).
Choose Build All now, and wait for it to build while we discuss the other options.

Chapter 2

[23]

The Build menu lets you build a single file—handy, if all you want to do is check the
syntax of the code you're writing and make sure you're free of errors—or the entire
project. It also lets you run the project outside of the debugger, which you might want
to do in some circumstances, like giving a demonstration. You can also clean your
project (remove all object files and other autogenerated products) by choosing Clean
All. The Publish option is available for some add-on kits that let you publish compiled
applications and libraries to application stores and repositories; you can find more
details about that in the documentation of any Qt Creator add-in, such as the SDKs for
Maemo development (an older Linux variant from Nokia for handheld devices).

Behind every Qt Creator project is a .pro file; this serves the same function as a make
file, and, in fact, is processed by a Qt toolkit command called qmake. (Make files are
files processed by the make command, which indicate what files should be compiled
in what order to generate an executable.) These files are declarative, in that you
declare the relationship between the files that make up your application, and qmake
figures out how to build your application from there. In most cases you'll need to
make few or no changes to a .pro file, but it doesn't hurt to understand how they
work. Double-click on MathFunctions.pro, and you'll find:

#---
#
Project created by QtCreator 2013-07-23T19:50:46
#
#---

QT -= gui

TARGET = MathFunctions
TEMPLATE = lib
CONFIG += staticlib

SOURCES += mathfunctions.cpp

HEADERS += mathfunctions.h
unix:!symbian {
 maemo5 {
 target.path = /opt/usr/lib
 } else {
 target.path = /usr/lib
 }
 INSTALLS += target
}

Building Applications with Qt Creator

[26]

The basic syntax of a .pro file is variable assignments; this file, generated by
Qt Creator for us, assigns the following variables:

•	 The QT variable indicates the Qt modules your project will link against.
By default, all projects include QtCore and QtGui; there's a plethora of
other modules available, which include key features such as the WebKit
web browsing engine (QtWebkit) and multimedia libraries (Phonon). Our
assignment here, indicates that we use the default Qt modules, but don't
link against QtGui.

•	 The TARGET variable is the name of the compiled library or executable.
•	 The TEMPLATE variable indicates the kind of qmake template qmake should

use to generate the binary; in our case, we're saying it should use the
template to create a lib file—a library.

•	 The CONFIG variable passes an additional configuration to the template of
qmake; here, we say that we want a statically linked library.

•	 The SOURCES and HEADERS variables contain lists of the source and header
files that make up your project.

•	 The INSTALLS variable indicates where the resulting build product should be
installed. Here, it's set in a scope. Scopes let you specify conditional options
in qmake; the condition for the scope is a variable or expression, which
may be true or false, and the code that follows is executed if the variable
is true. The scope at the end of this file says, "If we're building for a unix
variant and the variant isn't symbian, set the target.path variable to /opt/
usr/lib if the unix variant is maemo, otherwise set it to /usr/lib for other
unix variants, and in either case, set the INSTALLS variable to target".

These are the basic variables you'll find in almost any .pro file; for a good discussion
of qmake scopes you can use to control conditional compilation, see http://bit.
ly/163tAIh. Two additional variables you're likely to want to know about are
DEFINES and LIBS; DEFINES lets you specify preprocessor defines that should be set
throughout the build process, and LIBS indicates additional libraries against which
Qt Creator should link your project.

Note how variables are managed: you use = for assignment, += to add an item to
a list, and -= to remove an item from a list.

Chapter 2

[23]

Linking against our sample library
Now, let's make an application that depends on our library. Our application will
call the factorial function in the library, statically linking to the library to access
the factorial function. To accomplish this, you need to:

1.	 Choose Close All Projects and Editors from the File menu.
2.	 Choose New File or Project… from the File menu, and create a new

Qt console application called MathFunctionsTest using the wizard.
3.	 Right-click on MathFunctionsTest, and choose Add Library. You can then

choose a library in your build tree, one outside your build tree, or an external
library on your system like the Unix math library, ffmpeg, or another library
you've created. Choose External Library and click on Next.

4.	 Browse to the library file that was built in the previous section by
clicking on Browse next to the line labeled Library file. It'll be in a folder
named something like build-MathFunctions-Desktop_Qt_5_0_2_
MSVC2012_64bit in your project's folder. Choose the MathFunctions library
in either the release or debug folders—it doesn't matter which.

5.	 Browse to include files for your library by clicking on Browse next to Include
path; this is the directory where you put the headers for your library.

6.	 Choose static linking; if you were linking a dynamically linked library, of
course you'd choose Dynamic.

7.	 Leave the other values set to their defaults, click on Next and then on Finish.

Qt Creator will work its magic with your .pro file, adding a LIBS variable that
includes the output of your library build and an include path to your library's
header files.

We can now call our factorial function. Edit main.cpp to read:

#include <QCoreApplication>
#include "MathFunctions.h"

int main(int argc, char *argv[])
{
 QCoreApplication a(argc, argv);

 qDebug("6! is %d", MathFunctions::factorial(6));

 return a.exec();
}

Building Applications with Qt Creator

[28]

This code first includes our library header file. Note that if you compile the
application after adding just the #include declaration, you'll get autosuggest help
for every element of the MathFunctions library. This code uses qDebug instead of
the C standard library to perform its console output.

The qDebug() function actually has a stream-savvy implementation
too. I could have written the qDebug line as

qDebug() << "6! is" << MathFunctions::factorial(6);

and the code would have generated the same output.

Now, build and run the application in debug mode; you should see a console
window with the text 6! is 720. Try building and running the library in release
mode; wait, why is the debugging output from qDebug still there?

qDebug isn't really a debugging log, it's an output stream for debugging information
regardless of build levels. If you want to turn off its output in release builds, you'll
need to edit the .pro file. Double-click on your .pro file, and add the line:

CONFIG(release, debug|release): DEFINES += QT_NO_DEBUG_OUTPUT

This is another scope: it says that if your build configuration is release, add the
preprocessor definition QT_NO_DEBUG_OUTPUT to the list of preprocessor definitions
for the project.

Now, if you rebuild (don't just choose build, but actually choose rebuild, because
you want a clean build through the entire system) and run in release mode, you
won't see any output.

Qt actually defines four output streams, one for debugging messages
and one for bona fide warnings. Use qDebug for regular logging
and qWarning to output messages of a higher priority. There's
also qCritical and qFatal for higher-priority log messages that
should indicate critical failures, or failures that cause the application
to terminate. You can also turn off warnings in release builds the
same way; simply add the following to your .pro file:

CONFIG(release, debug|release): DEFINES += QT_NO_
WARNING_OUTPUT

Chapter 2

[23]

What if you want to add files to your project? You can either do it by manually
editing the .pro file, which can be faster if you're a good typist, but also error prone
and result in weird build problems if you mess up, or right-click on your project and
choose either Add New… or Add Existing Files…. The Add New… option opens
up a short wizard with choices like these:

•	 C++ header and source files
•	 Qt Designer forms that we'll talk about in the next chapter
•	 Qt Resource files that we'll talk about in the next chapter
•	 Qt Quick Markup (QML) files
•	 JavaScript files (which can contain the code implementing the logic

of a Qt Quick application)
•	 OpenGL shaders for fragments or vertices in either full OpenGL

or OpenGL/ES
•	 Text files (like a Readme file for your project) or a scratch file to use as a place

to stash temporary clipboard items until you're done with an editing session

Before we move on to the important topic of debugging, let's look at one more .pro
file, the .pro file for our application:

#---
#
Project created by QtCreator 2013-07-23T20:43:19
#
#---

QT += core

QT -= gui

CONFIG(release, debug|release): DEFINES += QT_NO_DEBUG_OUTPUT

TARGET = MathFunctionsTest
CONFIG += console
CONFIG -= app_bundle

TEMPLATE = app

SOURCES += main.cpp

Building Applications with Qt Creator

[30]

win32:CONFIG(release, debug|release): LIBS += -L$$PWD/../build-
MathFunctions-Desktop_Qt_5_0_2_MSVC2012_64bit/release/ -lMathFunctions
else:win32:CONFIG(debug, debug|release): LIBS += -L$$PWD/../build-
MathFunctions-Desktop_Qt_5_0_2_MSVC2012_64bit/debug/ -lMathFunctions
else:unix: LIBS += -L$$PWD/../build-MathFunctions-Desktop_Qt_5_0_2_
MSVC2012_64bit/ -lMathFunctions

INCLUDEPATH += $$PWD/../MathFunctions
DEPENDPATH += $$PWD/../MathFunctions

win32:CONFIG(release, debug|release): PRE_TARGETDEPS += $$PWD/../
build-MathFunctions-Desktop_Qt_5_0_2_MSVC2012_64bit/release/
MathFunctions.lib
else:win32:CONFIG(debug, debug|release): PRE_TARGETDEPS += $$PWD/../
build-MathFunctions-Desktop_Qt_5_0_2_MSVC2012_64bit/debug/
MathFunctions.lib
else:unix: PRE_TARGETDEPS += $$PWD/../build-MathFunctions-Desktop_
Qt_5_0_2_MSVC2012_64bit-Debug/libMathFunctions.a

Phew! That's pretty dense. Let's see if we can unravel it. It begins by telling the build
system that we use QtCore, but not QtGui. Next up, is the instruction to disable the
qDebug messages in release builds, which won't happen by default. The TARGET,
CONFIG, and TEMPLATE options together say that we're building a console application
with the name MathFunctionsTest. The next line indicates that we have one source
file, main.cpp.

The next set of scopes indicates the path to our library, and handles the fact that our
libraries are in different directories on Windows for release and debug—this is
different from on Unix systems, where there is only one build variant of the library.
After that, comes the INCLUDEPATH and DEPENDPATH variables, which indicate that
there are library headers in the MathFunctions directory, and that the application
depends on those headers. So, if the timestamps on the headers change, the binary
should rebuild. The final scope specifies the same dependency on the output library
itself; if the library changes, the application executable has to be rebuilt. This is
especially important, because that way we can run multiple copies of Qt Creator, edit
our library and application files separately, building the bits we need of either after
they change. When we do so that way, all the dependencies get figured out and the
right bits of the library and application get built automatically.

Chapter 2

[23]

Getting lost and found again – debugging
Qt Creator has a state-of-the-art GUI that hooks into either the GNU debugger GDB,
or Microsoft's command-line debugger CDB, if you use Microsoft tools.

If you've installed Qt Creator on Mac OS or Linux, or the MinGW version of Qt
Creator for Windows, you have everything you need to begin debugging your
application. If you already had Microsoft Visual Studio installed and installed a
version of Qt Creator that uses Microsoft's compiler, you need to also install the
Microsoft command-line debugger to use Qt Creator's debugging features. Here's
how to install the command-line debugger:

1.	 Download the debugging tools for Windows, at either http://bit.
ly/1dWoqi0 if you are using the 32-bit version of the compiler and Qt
Creator, or http://bit.ly/12kEtGt for the 64-bit version of the compiler
and Qt Creator.

2.	 Configure the debugging symbol server by going to Options under the
Tools menu, choosing the Debugger item on the left, choosing the CDB
pane, and clicking on Edit next to the Symbol Paths line.

Usually, the debugger works out of the box with Qt Creator, unless
you're using the Microsoft toolchain. However, if you encounter
problems, consult the Qt documentation on setting up the debugger
at http://bit.ly/19jgycQ.

Building Applications with Qt Creator

[32]

The following screenshot shows the debugger in action with our test project, stopped
at a breakpoint:

Qt Creator's Debug view in action

Let's look at the screenshot in detail to get oriented:

•	 On the left is the usual row of buttons to pick a view in Qt Creator
•	 Next to the buttons is the view of the project files and the list of open

documents
•	 In the main editor pane, every source line has a clickable indicator to let you

set and clear breakpoints
•	 The call stack, indicating how the program got to the line execution is

stopped at, is shown in the pane below the editor pane

Chapter 2

[23]

•	 On the upper right is the variable inspector, where you can see the values of
the variables in the current stack frame, along with any global variables

•	 Below the variable inspector is a list of pending breakpoints, so you can turn
on and off breakpoints without needing to hunt through the code

To generate the previous screenshot, I clicked on the left of line 7, placing a
breakpoint, and then clicked on the Debug button on the left after ensuring I'd
specified a debug build in the build selector. Qt Creator built the application in
debug mode, started the application, and let it run to the breakpoint on line 7.

Setting breakpoints and stepping through
your program
A breakpoint, if you haven't encountered the idea before, is just that—a point at
which execution breaks and you can examine the program's state. Once stopped at a
breakpoint, you can step into a function, or step over a line, executing your program
one line at a time to see how it's behaving. In the Debug view, clicking on the left
of the number line lets you set or clear breakpoints. While stopped at a breakpoint,
a yellow arrow in the margin of the editor pane indicates the line of code that the
processor is about to execute.

While at a breakpoint, several buttons appear above the call stack pane that let you
control program flow. They are:

•	 The green continue button, which continues execution at the line indicated
by the arrow. You can also continue by pressing the F5 function key.

•	 The red stop button, which stops debugging altogether.
•	 The step over button, which executes the current line and advances to the

next line before stopping again. You can step over one line by pressing F10.
•	 The step into button, which enters the next function to be called and stops

again. You can step into a function by pressing F11.
•	 The step out button, which runs the remainder of the function in the current

calling context before stopping again. You can step out of the current
function by pressing F11.

•	 The instruction-wise button (which looks like a little screen), which toggles
the debugger between working a source line at a time and an assembly line
at a time.

•	 There's also a menu of threads, so you can see which thread is running or
stopped.

Building Applications with Qt Creator

[34]

If (in the previous screenshot) from line 7 we step over line 8 (pressing F10) and
then press F11, we'll end up inside our factorial function, as you see in the next
screenshot. I've clipped the screenshot so you only see the relevant panes of the
debugger that have changed, and resized the window a bit, so you can see the whole
call stack.

The debugger about to enter a function

Chapter 2

[23]

At this point, if we step one more line (F10) again, we'll see the value for n change in
the right-hand column, and the arrow advance to point at line 9 (again, as numbered
in the screenshot). From here, we can debug my function in several ways:

•	 We can examine the contents of a variable by looking at it in the right-hand
pane. If it's in a stack frame above the current calling frame, we can change
call frames and see variables in a different call frame too.

•	 We can modify a variable by clicking on its value and entering a new value.
•	 With some debuggers, we can move the arrow to different lines in the calling

function to skip one or more lines of code, or rewind the execution to re-run a
segment of code over again.

This last feature—which unfortunately doesn't work with CDB—is especially
powerful, because we can step through a program, observe an error, modify
variables to work around the course of the error, and continue testing our code
without needing to recompile our code and re-run our executable. Or, we can skip
a bit of code that we know takes a while to run by substituting the new state in the
variables in question and continuing from a new location in the current call frame.

There are also a number of other things we can do, from how we debug the
application to various ways we can view the state of our application when it's
running. On the main Debug menu, we can:

•	 Detach the debugger from a running process by choosing Detach from the
Debug menu (handy if the debugger is slowing things down and we know
that part of our code doesn't need to be debugged).

•	 Interrupt program execution, stop execution, and examine the current state
by choosing Interrupt from the Debug menu (useful if our application seems
caught in a long loop we weren't expecting and appears hung).

•	 While stopped, we can run to the line the cursor is on by choosing Run to
Line or press Ctrl + F10.

•	 While stopped, we can skip to the line the cursor is on by choosing Jump
to Line.

Building Applications with Qt Creator

[36]

Fine-grained control of breakpoints
If you right-click in the breakpoint pane, you can add, edit, or delete breakpoints.
Hitting Add Breakpoint… or Edit Breakpoint… brings up the Breakpoint Editor, a
daunting dialog given the humble breakpoint itself. The following screenshot shows
the Breakpoint Editor:

The Breakpoint Editor window

From the editor, you can fine-tune a breakpoint, setting:

•	 The kind of breakpoint. Most breakpoints are by filename and line
number—a specific line of the code—but you have several other choices,
including:

°° The entry point of a function by name
°° When a memory address is reached for execution

Chapter 2

[23]

°° When a C++ exception is thrown or caught
°° When a JavaScript exception occurs
°° When your main function starts
°° When a new process is forked
°° When a system call occurs
°° When data is accessed at a fixed location, or an address indicated

by an expression involving a pointer variable at runtime

•	 The location of the breakpoint (such as the source line number and filename,
or the function), depending on your choice from the previous list.

•	 Whether the breakpoint is enabled or not.
•	 Whether the breakpoint is one-shot, that is, will be disabled after it fires once.
•	 Conditions for the breakpoint, such as an expression in involving program

variable values, how many times to ignore the breakpoint, and which
threads the breakpoint applies to.

Examining variables and memory
The variables pane shows you the values of all the variables in the current stack
frame. Structures show the values of their members, so you can walk through
complex data structures as well. From the variables pane, you can also copy a
variable name and value to the clipboard, or just a variable value.

From the variables pane, there's a really useful feature called the Expression
Evaluator, which lets you construct algebraic expressions about variables in
your code and see the results. For example, if I'm stopped at the beginning of the
factorial function, as you see in the The debugger about to enter a function screenshot,
with n set to 6, I can right-click on the variables pane, choose Insert New Expression
Evaluator, and type in a formula n*(n-1) in the dialog that appears, and a new line
appears in the pane showing the expression and the value 30. While this is a pretty
contrived example, I can view pointer values and pointer dereferences as well.

I can also conditionally break execution when a variable changes; this is called a
conditional breakpoint or a data breakpoint. For example, let's put a loop in our main
function, and break as we execute the loop. To do this, first change main to read:

#include <QCoreApplication>
#include <QDebug>
#include "MathFunctions.h"

Building Applications with Qt Creator

[38]

int main(int argc, char *argv[])
{
 QCoreApplication a(argc, argv);

 int values[] = { 6, 7, 8 };

 for(int i = 0; i < sizeof(values)/sizeof(int); i++)
 {
 qDebug() << values[i]
 << "! = "
 << MathFunctions::factorial(values[i]);
 }

 return a.exec();
}

This will walk the values stored in the integer array values, and print the computed
factorial of each value. Start debugging again, and let's add a data breakpoint on i.
To do this:

1.	 Put a breakpoint on the first line of main, the line initializing
QCoreApplication.

2.	 Right-click on i in the left pane and choose Add Data Breakpoint
at Object's Address from the Add Data Breakpoint submenu.

3.	 Continue by pressing F5 or the Continue button.

Execution will stop at line 11, the beginning of the for loop, when i is set to 0.
Each time I hit F5 to continue, the application runs until the value of i changes
as a result of the i++ statement at the end of the for loop.

You can also inspect and change individual values of arrays in the variable
inspector, by clicking on the expansion arrow next to the array name in the
variable inspector pane.

In addition to viewing and changing variable values, you can also view and change
individual memory locations. You might want to do that if you're debugging a
decoder or encoder for a binary format, for example, where you need to see a
specific location in memory. From the variables pane, you have several choices:

•	 You can right-click on a given variable and open a memory window at
that variable's address

•	 You can right-click on a given variable and open a memory window at the
value that the variable points to (in other words, dereference a pointer to
a memory location)

Chapter 2

[23]

•	 You can right-click on the variable pane and open up a memory browser at
the beginning of the current stack frame

•	 You can right-click on the variable pane and open up a memory browser at
an arbitrary location in memory

The following screenshot shows the memory viewer showing the memory that
contains the values of the array values:

The Memory Viewer window

The window shows the memory addresses down the left, the values of memory at
sixteen bytes to a line (first in hexadecimal and then in ASCII), and colors the actual
variable you've selected to open the window. You can select a range of values and
then right-click to perform the following:

•	 Copy the values in ASCII or hexadecimal
•	 Set a data breakpoint on the memory location you've selected
•	 Transfer execution to the address you've clicked (probably not what you

want to do if you're viewing the data)

Examining the call stack
The call stack is the hierarchy of function calls in your application execution at
a point in time. Although the actual flow varies, typically in your code it begins
in main, although what calls main differs from platform to platform. An obvious
use for the call stack is to provide context when you press the Interrupt button; if
your program is just off contemplating its navel in a loop somewhere, clicking on
Interrupt and looking at the call stack can give you a clue as to what's going on.

Building Applications with Qt Creator

[40]

Remember how I defined the factorial function in terms of itself? You can see this
very clearly if you put a breakpoint in factorial, call it, and continue through the
breakpoint a few times before looking at the call stack; you'll see something akin to
the following screenshot:

The call stack of a recursive function in mid-computation

Working from left to right, the fields of the call stack window are the stack level
(numbering from the top of the stack down), the function being invoked, the file the
function is defined in, and the line number of the function currently being executed.
So, this stack frame says that we're on line 9 of MathFunctions::factorial in
mathfunctions.cpp, called by line 13 of MathFunctions::factorial, which is called
by line 13 of MathFunctions::factorial and so on, until it bottoms out in our main
function, and the system startup code that the operating system uses to set up the
application process before that.

If you right-click on a line of the call stack pane, you can:

•	 Reload the stack, in case the display appears corrupted.
•	 Copy the contents of the call stack to the clipboard; it is great for bug reports.

If your application throws an exception or crashes in the debugger, you can
copy the call stack and send it off to the developer responsible for that part of
the code (or keep it for yourself as a souvenir).

•	 Open the memory editor at the address of the instruction at the line of code
indicated by the function call in the call stack.

•	 Open the disassembler at the address of the instruction at the line of code
indicated by the function call in the call stack.

•	 Disassemble a region of memory or the current function.
•	 Show the program counter address in the call stack window while debugging.

Chapter 2

[23]

The Projects pane and building your
project
You've seen how the .pro file affects your project's compilation, but there's even
more to it than that. If you click the Projects button on the left of Qt Creator, you'll
see the project's options, which consist of the Build & Run options, the Editor
options, the Code Style options, and Dependencies, each in their own panel.

In most cases, you won't need to monkey around with any of these settings. But
you may need to tinker with the Build & Run settings, especially if you're targeting
multiple platforms, such as Windows and Linux with cross-compilers, or Android
and iOS once Digia finishes support for those platforms. (I write more about this
exciting development in Qt later in this book.)

The final thing you should know about is the build and run kit selector. Qt is one
of the best cross-platform toolkits available today, and you can easily find yourself
working on a system supporting multiple platforms, such as Linux and Android,
or multiple versions of Qt. To support this, Qt has the notion of a build kit, which
is just the headers, libraries, and associated stuff to support a specific platform. You
can install multiple build kits, and choose which build kit you're compiling against
by choosing Open Build and Run Kit Selector….. By default, if you followed the
steps in the previous chapter to install Qt Creator, you'll have one build kit installed;
from the Digia site, you can choose others. In a later chapter, we'll build a sample
application for Qt on Android. To do this, you'd need to download and install the
Qt on Android build kit, and then tell Qt Creator about the new kit. Adding kits is
easy, you just need to install the kit using your operating system, and then do the
following in Qt Creator:

1.	 Click on Projects on the left.
2.	 Click on Manage Kits… on the upper left-hand side of the pane that appears.

The Build & Run options window appears.
3.	 Qt may autodetect your new kit, or you may need to add it by clicking on

Add. Once you click on Add, you'll need to specify the target platform
(such as an Android device), the compiler to use, and so forth.

For the build settings, there are configuration options for your release and debug
builds. In the Build Settings editor, you can control whether the build products are
placed in their own directory (the default, a so-called shadow build where your build
outputs are mixed with the source code), the qmake configuration for the build (and
actually see how Qt Creator will invoke qmake), how Qt Creator cleans your project,
and any environment variables you need to set for the build.

Building Applications with Qt Creator

[42]

The run settings let you control whether your application runs locally or is deployed
on a remote host (not always supported, but usually the case for platforms such as
Android), any command-line arguments you want to pass to your applications, and
the settings for the performance analyzer tool, which I will talk more about in Chapter
4, Localizing Your Application with Qt Linguist.

In the Editor panel, you can set specific editor options for this project. These override
the global Qt Creator defaults, which you can set by choosing Options from the
Tools menu and selecting the Text Editor option. These options include details like
whether to use tabs or spaces when formatting your code (I strongly suggest you use
spaces; it's compatible with editors everywhere), the number of spaces per tab stop,
whether or not automatic indentation occurs, how source files should be encoded,
and so forth.

The Code Style panel is another override to the global settings for Qt Creator (this
time, it's the C++ and Qt Quick panels of the Options dialog available from the
Options menu). Here, you can pick default styles, or edit the styles.

I'd strongly recommend that you pick a style that matches the existing
source code you're editing; if you're starting from a blank page,
the Qt default style is quite readable, and is my favorite.

The Dependencies panel lets you set the build order if your project file contains
multiple subprojects, so that things build in the right order. For example, we could
choose to open both our library project and our test project; if we do, we'll see the
MathFunctions library listed in the dependencies, and we can select that project to
build before the test application is built.

A review – running and debugging your
application
You'll spend a lot of time editing, compiling, and debugging your code in Qt Creator,
so, it's wise to remember the following basics:

•	 The arrow key runs your application without the debugger; to debug your
application, choose the arrow key with the bug icon on it.

•	 You can switch between the editor view and the debug view of your
application by clicking on the Edit or Debug view choice on the left; if you
debug your application, Qt Creator will enter the debug view automatically.

Chapter 2

[23]

•	 There's more to breakpoints than just stopping at a line of code! Use data
breakpoints to help pin down weird bugs that happen only sometimes,
or to quickly skip over the first bazillion items of a large loop.

•	 The variable pane lets you see more than just the contents of variables;
you can also add expressions composed of several variables and arithmetic,
or view arbitrary memory locations.

•	 Want to hack around a bug during a debugging session? You can change the
values of variables in the variable pane and continue running, changing the
program state as you go.

Summary
Qt Creator's integrated development environment contains an editor and tools to
start the compiler, linker, and debugger to build and debug your applications. Using
it, you can start and stop your application, place breakpoints while your application
is stopped, or examine variables or the logical flow of your application.

While Qt Creator manages most of a project for you, sometimes you just have to
get down and dirty with a .pro file. You can use scopes to handle conditional
compilation (things like when building for a specific platform, or whether a file
should be included in release or debug mode). The .pro file consists of scopes,
variables, and their values; by setting the variables that the .pro file feeds qmake,
qmake understands the dependencies in your project and magically creates a Make
file to build your application.

In the next chapter, we'll turn from the mechanics of making a project build and look
at Qt Creator's UI designer, and give you a brief introduction into the worlds of both
Qt Widgets and Qt Quick.

Designing Your Application
with Qt Designer

Qt is perhaps best known as a cross-platform user interface toolkit, and only in
the last few years has Qt Creator really evolved to be a full software development
environment. Even in its early releases, however, Qt had an excellent facility for
building user interfaces with Qt Designer, now part of Qt Creator. More recently,
the developers building Qt have added Qt Quick as a second option for user
interface development. Qt Quick extends the Qt libraries and the Qt Designer
capabilities of Qt Creator to build fluid interfaces for touchscreens and set-top
boxes and to facilitate the declarative nature of Qt Quick and Qt Meta-object
Language (QML).

In this chapter, we will learn how to create user interfaces using Qt Designer,
the user interface builder in Qt Creator. We begin by introducing key concepts
to understanding the Qt framework: signals and slots. Next, we revisit using Qt
Designer to create application forms, the basis of your user interface when using
Qt Widgets. We touch on how to add resources and access them in your application,
an important facet of user interface design. Then, we return to the code for a bit and
build on the fundamentals of QML you learned in Chapter 1, Getting Started with
Qt Creator. At the end of this chapter, you'll be well equipped to decide whether
your application should be written using Qt GUI or Qt Quick, and to build your
application with the help of the documentation that accompanies Qt Creator.

Designing Your Application with Qt Designer

[46]

Code interlude – signals and slots
In software systems, there is often the need to couple different objects. Ideally,
this coupling should be loose, that is, not dependent on the system's compile-time
configuration. This is especially obvious when you consider user interfaces; for
example, a button press may adjust the contents of a text widget or cause something
to appear or disappear. Many systems use events for this purpose; components
offering data encapsulate that data in an event, and an event loop (or, more recently,
an event listener) catches the event and performs some action.

Qt offers a better way: signals and slots. Like an event, the sending component
generates a signal—in Qt parlance, the object emits a signal—which recipient
objects may receive in a slot for the purpose. Qt objects may emit more than one
signal, and signals may carry arguments; in addition, multiple Qt objects can
have slots connected to the same signal, making it easy to arrange one-to-many
notifications. Equally important, if no object is interested in a signal, it can be safely
ignored, and no slots connected to the signal. Any object that inherits from QObject,
Qt's base class for objects, can emit signals or provide slots for connection to signals.
Under the hood, Qt provides extensions to C++ syntax for declaring signals
and slots.

A simple example will help make this clear. The classic example you find in the
Qt documentation is an excellent one, and we'll use it again it here, with some
extension's. Imagine you have the need for a counter, that is, a container that holds
an integer. In C++, you might write:

class Counter
{
public:
 Counter() { m_value = 0; }
 int value() const { return m_value; }
 void setValue(int value);

private:
 int m_value;
 };

The Counter class has a single private member, m_value, bearing its value. Clients
can invoke the value to obtain the counter's value, or set its value by invoking
setValue with a new value.

Chapter 3

[47]

In Qt, using signals and slots, we write the class this way:

#include <QObject>

class Counter : public QObject
{
 Q_OBJECT

public:
 Counter() { m_value = 0; }

 int value() const { return m_value; }

 public slots:
 void setValue(int value);
 void increment();
 void decrement();

signals:
 void valueChanged(int newValue);

private:
 int m_value;
};

This Counter class inherits from QObject, the base class for all Qt objects.
All QObject subclasses must include the declaration Q_OBJECT as the first element
of their definition; this macro expands to Qt code implementing the subclass-specific
glue necessary for the Qt object and signal-slot mechanism. The constructor remains
the same, initializing our private member to zero. Similarly, the accessor method
value remains the same, returning the current value for the counter.

An object's slots must be public, and are declared using the Qt extension to C++
public slots. This code defines three slots: a setValue slot, which accepts a new
value for the counter, and the increment and decrement slots, which increment
and decrement the value of the counter. Slots may take arguments, but do not return
them; the communication between a signal and its slots is one way, initiating with
the signal and terminating with the slot(s) connected to the signal.

The counter offers a single signal. Like slots, signals are also declared using a
Qt extension to C++, signals. In the example above, a Counter object emits the
signal valueChanged with a single argument, which is the new value of the counter.
A signal is a function signature, not a method; Qt's extensions to C++ use the type
signature of signals and slots to ensure type safety between signal-slot connections,
a key advantage signals and slots have over other decoupled messaging schemes.

Designing Your Application with Qt Designer

[48]

As the developers, it's our responsibility to implement each slot in our class with
whatever application logic makes sense. The Counter class's slots look like this:

void Counter::setValue(int newValue)
{
 if (newValue != m_value) {
 m_value = newValue;
 emit valueChanged(newValue);
 }
}

void Counter::increment()
{
 setValue(value() + 1);
}

void Counter::decrement()
{
 setValue(value() – 1);
}

We use the implementation of the setValue slot as a method, which is what all slots
are at their heart. The setValue slot takes a new value and assigns the new value to
the Counter class's private member variable if they aren't the same. Then, the signal
emits the valueChanged signal, using the Qt extension emit, which triggers
an invocation to the slots connected to the signal.

This is a common pattern for signals that handle object properties:
testing the property to be set for equality with the new value, and
only assigning and emitting a signal if the values are unequal.

If we had a button, say QPushButton, we could connect its clicked signal to
the increment or decrement slot, so that a click on the button incremented
or decremented the counter. I'd do that using the QObject::connect method,
like this:

QPushButton* button = new QPushButton(tr("Increment"), this);
Counter* counter = new Counter(this);
QObject::connect(button, SIGNAL(clicked(void)),
 Counter, SLOT(increment(void));

Chapter 3

[49]

We first create the QPushButton and Counter objects. The QPushButton constructor
takes a string, the label for the button, which we denote to be the string Increment or
its localized counterpart.

Why do we pass this to each constructor? Qt provides a parent-child memory
management between QObjects and their descendants, easing clean-up when
you're done using an object. When you free an object, Qt also frees any children
of the parent object, so you don't have to. The parent-child relationship is set at
construction time; I'm signaling to the constructors that when the object invoking
|this code is freed, the push button and counter may be freed as well. (Of course,
the invoking method must also be a subclass of QObject for this to work.)

Next, I call QObject::connect, passing first the source object and the signal to be
connected, and then the receiver object and the slot to which the signal should be
sent. The types of the signal and the slot must match, and the signals and slots must
be wrapped in the SIGNAL and SLOT macros, respectively.

Signals can also be connected to signals, and when that happens, the signals are
chained and trigger any slots connected to the downstream signals. For example,
I could write:

Counter a, b;
QObject::connect(&a, SIGNAL(valueChanged(int)),
 &b, SLOT(setValue(int)));

This connects the counter b with the counter a, so that any change in value to the
counter a also changes the value of the counter b.

Signals and slots are used throughout Qt, both for user interface elements and to
handle asynchronous operations, such as the presence of data on network sockets
and HTTP transaction results. Under the hood, signals and slots are very efficient,
boiling down to function dispatch operations, so you shouldn't hesitate to use the
abstraction in your own designs. Qt provides a special build tool, the meta-object
compiler, which compiles the extensions to C++ that signals and slots require and
generates the additional code necessary to implement the mechanism.

Creating forms in Qt Designer
Let's create a simple calculator application using Qt Designer and two forms: one
form taking the arguments for an arithmetic operation, and a second dialog form
for presenting the results. I'll do this twice in this chapter, first showing you how to
do this using Qt GUI, and again using Qt Quick. The example is contrived, but will
show you how to create multiple user interface forms in both environments, and
give you practice in working with signals and slots.

Designing Your Application with Qt Designer

[50]

Creating the main form
In Chapter 1, Getting Started with Qt Creator, you learned the basic elements of the
Qt GUI Designer, including the palette of widgets you can use, the central edit pane,
the tree of objects, and the property view. The following screenshot shows the Qt
Designer again:

Qt Creator's Designer for Qt GUI applications

Working from left to right, the parts of the screen you see are:

•	 The views selector, presently indicating that the Qt Designer view is active
•	 The palette of possible widgets you can lay out on your form
•	 The form editor, above the connection editor, which lets you wire signals

and slots between widgets
•	 The object tree, indicating all of the objects that have been laid out on the

form and showing their parent-child relationships through the use of
nested lists

•	 Below the object tree is the property editor, where you can edit the
compile-time properties of any item you select on the form editor

Chapter 3

[51]

Let's begin by creating a new Qt GUI project (select Qt Gui Application from the
New File or Projects… dialog) naming the project QtGuiCalculator, and then
follow these steps:

1.	 In the Forms folder of the project, double-click on the mainwindow.ui file.
The designer will open.

2.	 Drag out Vertical Layout from the palette.
3.	 Right-click on the layout and choose Lay out, then choose Adjust Size.

The layout will shrink to a point.
4.	 Drag two Line Edit widgets and drop them on the vertical layout in the

object viewer (the far-right pane). You'll see the vertical layout grow to accept
each of the line editors. You should now have something that looks like the
following screenshot:

Your layout after the first two text fields

5.	 Drag the Horizontal Layout and drop it on the vertical layout in the
object viewer.

6.	 Drag-and-drop four Push Button widgets on the horizontal layout you
just added.

7.	 Resize the containing window so that the entire layout is shown in
the window.

Designing Your Application with Qt Designer

[52]

8.	 Rename the buttons plusButton, minusButton, timesButton, and
divideButton using the property browser in the lower-right corner.
As you do so, scroll down to the text property (under QAbstractButton)
and give each button a logical label like +, -, *, and /.

9.	 Select the top input line and name it argument1Input.
10.	 Select the bottom input line and name it argument2Input.

The next screenshot shows what you should see in the Qt Designer form editor
pane so far. You can also manually arrange the buttons by breaking the layout and
positioning them using the mouse, but that typically makes your layout less robust
to window resizing, and is generally not a good idea:

Our calculator user interface

So far, this is pretty straightforward. We used a vertical layout and a horizontal
layout to lay out the various controls; this takes advantage of Qt's dynamic
constraints on widget layout and sizing. All widgets have a minimum and a
maximum size, which are used by layouts to determine the actual size a widget
consumes. Some widgets are elastic; that is, they stretch to fill their contents.
When specifying the actual size of a widget, you can specify that it takes one of
the following values in each of the x and y axes:

•	 The minimum size of the widget
•	 The maximum size of the widget

Chapter 3

[53]

•	 A fixed size between its minimum and maximum
•	 An expanding size, expanding to fit the contents of the widget

Qt provides four kinds of layouts, which you can mix and match as we just did.
You've encountered the vertical and horizontal layouts; there's also a grid layout,
which lets you organize things in an m × n grid, and a form layout, which organizes
widgets in a manner similar to how the native platform enumerates fields on a form.

Right now, our layout's a little bunched up. Let's add some spacers to better fill the
space in the window, and also add a button for an about box:

1.	 Drag Vertical Spacer and drop it between the input lines, and a second
vertical spacer between the horizontal layout containing the row of buttons
and the input line.

2.	 Drag a Tool Button widget to the vertical layout, and add a spacer between
the bottom line and the push button.

3.	 Name the last push button aboutButton and give it the text About.
We'll add an icon later.

The following screenshot shows the application as we've constructed it in the
designer if you press the Run button:

Our application's main window

Designing Your Application with Qt Designer

[54]

Now, let's make our result dialog. Right-click on the project and choose
Add New…, then:

1.	 In the dialog that appears, choose Qt on the left, and then Qt Designer Form
in the middle. Click on Choose.

2.	 Choose a dialog style for your dialog; choose Dialog with Buttons Bottom
and click on Next.

3.	 Name the file resultdialog.ui and click on Next.
4.	 Click on Finish.
5.	 In the dialog that appears, drag out Form Layout. Right-click on it and

choose Lay out and Adjust size.
6.	 Add a Label widget to the form layout. Change its text to read Result.
7.	 Drag out another label, and name it result.

Now may be a good time for you to experiment with layouts and spacers, and style
the dialog any way you wish.

Using application resources
Now, let's add an icon to the application for the About button. You can draw one,
or go to a website such as The Noun Project (http://bit.ly/16n9bOk) for a suitable
icon. Icons can be PNG, JPEG, or other formats; a good choice is SVG, because SVG
images are vector based and scale correctly to different sizes. Put the resource file in
your project directory, and then:

1.	 Choose the Edit view in Qt Creator.
2.	 Right-click on the solution and click on Add New…; then, choose Qt and Qt

Resource File.
3.	 Name the file resources.
4.	 Add it to the current project.
5.	 If resources.qrc isn't already open in the editor, double-click on it in the

solution pane. The resource file editor will appear.
6.	 Click on Add, choose Add prefix, and prefix /.
7.	 Click on Add again, select Add Files, and choose your icon.

Chapter 3

[55]

Icons are loaded in the read-only segment of your application through the Qt
resource compiler. You can access them anywhere you'd access a file by prefixing
the path and name of the resource with a colon. For example, we might place a text
file in our application resources and then open the file for reading, like this:

QFile file(":/data/myfile.txt");
file.open(QIODevice::ReadOnly | QIODevice::Text);

while (!file.atEnd()) {
 QByteArray line = file.readLine();
 process_line(line);
}

Application resources are suitable for text and small media files such as icons
or images. You should avoid using them for larger items like movies and large
sounds, however, because they'll needlessly bloat the size of your application
binary. For those purposes, it's better to package media files with your application
and load them directly from the disk.

In the next section, we'll use the resource you added, when we add our about box
to the application.

Instantiating forms, message boxes, and
dialogs in your application
The Qt Designer generates an XML-based layout file (which ends in .ui) for each
form you create in the designer. At compile time, Qt Creator compiles the layout
into a header file that constructs the components for your user interface layout. The
pattern typically used by Qt applications is to construct a private layout class that is
instantiated by a main window or dialog's constructor, and then the user interface is
instantiated. Here's how it works for the main window:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
 class MainWindow;
}

Designing Your Application with Qt Designer

[56]

class ResultDialog;

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private:
 Ui::MainWindow *ui;
};

#endif // MAINWINDOW_H

// In mainwindow.cpp:
#include "mainwindow.h"

// mainwindow.cpp
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow),
{
 ui->setupUi(this);
}

The Ui::MainWindow class is automatically constructed by the Qt Designer; by
including its declaration in mainwindow.cpp, we create an instance of it and assign
that instance to the ui field. Once initialized, we call its setupUi function, which
creates the entire user interface you sketched out in Qt Designer.

The controls we laid out in Qt Designer are accessible as field names. For example,
we can modify mainwindow.cpp to invoke an about box by adding a slot to
mainwindow.h to handle the case when you click on the About button, and then
add the code to invoke an about box in the implementation of the slot. To do that,
follow these steps:

1.	 Add a public slots declaration to mainwindow.h, along with a slot named
aboutClicked. It should now read:

Chapter 3

[57]

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

public slots:
 void aboutClicked();

private:
 Ui::MainWindow *ui;
};

2.	 Add the implementation of the aboutClicked slot to mainwindow.cpp.
This code constructs a QMessageBox object on the stack, and sets its icon to
the icon you added in your resources earlier, the text of the dialog to "Lorem
ipsum", and the title of the message box to "About". The exec method of the
QMessageBox invocation opens the message box and blocks the application
flow until you dismiss the message box. It should read:
void MainWindow::aboutClicked()
{
 QMessageBox messageBox;
 messageBox.setIconPixmap(QPixmap(":/icon.png"));
 messageBox.setText("Lorem ipsum.");
 messageBox.setWindowTitle("About");
 messageBox.exec();
}

3.	 At the top of mainwindow.cpp, add an include statement for the
QMessageBox class:
#include <QMessageBox>

4.	 In the MainWindow constructor, connect the signal from the about button
to the slot you just created. Your constructor should now read:

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow),
 results(0)

Designing Your Application with Qt Designer

[58]

{
 ui->setupUi(this);
 QObject::connect(ui->aboutButton, SIGNAL(clicked()),
 this, SLOT(aboutClicked()));
}

If we build the application, we now have a fully functioning about box, including
the application icon you chose. The connect call is just like the previous signal-slot
connections we've seen; it connects the clicked signal of aboutButton to your
aboutClicked slot in the main window UI.

A word on naming signals and slots before we continue: a signal is typically named
a verb in its past tense, denoting the semantics of the event that just occurred that it's
trying to signal. A slot should somehow match those semantics, preferably including
more detail as to how the signal is being handled. So Qt names the button's clicked
signal logically, and I expand on this by giving a slot named aboutClicked. Of
course, you can name your signals and slots whatever you like, but this is a good
practice to follow.

Before we wire up the other buttons and implement our calculator logic, we need to
set up the class for our results dialog. We'll follow the pattern of the MainWindow
class, creating a private ui member that contains an instance of the compile-time
generated object that constructs the UI for the results dialog. You can create the
ResultDialog class using the New File wizard available by right-clicking on the
project; choose Qt Designer Form Class and name it ResultDialog. The class itself
should inherit from QDialog. The header file should look like this:

#ifndef RESULTDIALOG_H
#define RESULTDIALOG_H

#include <QDialog>

namespace Ui {
 class Dialog;
}

class ResultDialog : public QDialog
{
 Q_OBJECT
public:
 explicit ResultDialog(QWidget *parent = 0);
 ~ResultDialog();

Chapter 3

[59]

private:
 Ui::Dialog *ui;

};

#endif // RESULTDIALOG_H

The first thing we need to do is forward-declare the Dialog class created by the
Qt Designer; we do this in the namespace Ui, so it doesn't conflict with any other
code in my application. Then, we need to declare a pointer to an instance of that
class as a private member variable; we name this pointer ui, as was done for the
MainWindow class.

You can guess what our ResultDialog implementation looks like:

#include "resultdialog.h"
#include "ui_resultdialog.h"

ResultDialog::ResultDialog(QWidget *parent) :
 QDialog(parent),
 ui(new Ui::Dialog)
{
 ui->setupUi(this);

}

ResultDialog::~ResultDialog()
{
 delete ui;
}

At construction time, it makes an instance of our Ui:Dialog class, and then invokes
its setupUi method to create an instance of the user interface at runtime.

Wiring the Qt GUI application logic
The application logic for the calculator is simple: we add a property setter to the
ResultDialog implementation that lets us set the result field of the dialog, and
then wire up some arithmetic, signals, and slots in MainWindow to do the actual
computation and show the dialog.

First, the change to ResultDialog:

void ResultDialog::setResult(float r)
{
 ui->result->setText(QString::number(r));
}

Designing Your Application with Qt Designer

[60]

This method takes a float, the value to show in the dialog, and formats the result
as a string using Qt's default formatting. Qt is fully internationalized; if you do
this in English-speaking locales, it will use a decimal point, while if you do it with
a locale set to a region where a comma is used as the decimal separator, it will
use a comma instead. The number method is a handy one, with overloads taking
doubles and floats, as well as integers, and arguments to indicate the precision and
exponentiation of the returned string.

Now, the modified MainWindow class. First, the revised class declaration:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>
#include <QPair>

namespace Ui {
 class MainWindow;
}

class ResultDialog;

class MainWindow : public QMainWindow
{
 Q_OBJECT

 typedef QPair<float, float> Arguments;

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

 Arguments arguments();

signals:
 void computed(float f);

public slots:
 void aboutClicked();
 void plusClicked();
 void minusClicked();
 void timesClicked();
 void divideClicked();

 void showResult(float r);

Chapter 3

[61]

private:
 Ui::MainWindow *ui;
 ResultDialog* results;
};

#endif // MAINWINDOW_H

In addition to the base class QMainWindow, I now include QPair, a simple Qt
template that lets us pass pairs of values. We'll use the QPair template, type-defined
as Arguments, to pass around the pair of arguments for an arithmetic operation.

I add a signal, computed, which the class triggers any time it performs an arithmetic
operation. I also add slots for each of the arithmetic button clicks: plusClicked,
minusClicked, timesClicked, and dividedClicked. Finally, I add a signal
showResult, which shows the result when a computation occurs.

The constructor of MainWindow now needs to do a bunch of signal-slot wiring for
all of our buttons, signals, and slots:

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow),
 results(0)
{
 ui->setupUi(this);
 QObject::connect(ui->aboutButton, SIGNAL(clicked()),
 this, SLOT(aboutClicked()));
 QObject::connect(this, SIGNAL(computed(float)),
 this, SLOT(showResult(float)));
 QObject::connect(ui->plusButton, SIGNAL(clicked()),
 this, SLOT(plusClicked()));
 QObject::connect(ui->minusButton, SIGNAL(clicked()),
 this, SLOT(minusClicked()));
 QObject::connect(ui->timesButton, SIGNAL(clicked()),
 this, SLOT(timesClicked()));
 QObject::connect(ui->divdeButton, SIGNAL(clicked()),
 this, SLOT(divideClicked()));
}

After connecting the about button to the slot that shows the about dialog, I next
connect the computed signal from MainWindow to its showResult slot. Note that
this signal/slot carries an argument, the value to show. The remaining four
connections connect each of the operation buttons with the code to perform
a specific arithmetic operation.

Designing Your Application with Qt Designer

[62]

The showResult slot creates a new ResultDialog object if we don't already have
one, sets its result to the incoming value, and invokes the dialog:

void MainWindow::showResult(float r)
{
 if (!results)
 {
 results = new ResultDialog();
 }
 results->setResult(r);
 results->exec();
}

The arguments method is a helper method used by each of the arithmetic functions,
it fetches the values from each of the input lines, converts them from strings to
floating-point numbers, and does a little bit of error checking to ensure that the
entries are valid floating-point numbers:

MainWindow::Arguments MainWindow::arguments()
{
 bool ok1, ok2;
 float a1 = ui->argument1Input->text().toFloat(&ok1);
 float a2 = ui->argument2Input->text().toFloat(&ok2);
 if (!ok1 || !ok2)
 {
 QMessageBox messageBox;
 messageBox.setIconPixmap(QPixmap(":/icon.png"));
 messageBox.setText("One of your entries is not a valid
 number.");
 messageBox.setWindowTitle("Error");
 messageBox.exec();
 }
 return Arguments(a1, a2);
}

The QString method toFloat does just that: it converts a string to a floating-point
number, returns the number, and sets the Boolean passed in to true if the conversion
was successful, and false otherwise. The code does this for both argument input
lines, then checks the resulting Boolean values, and reports an error if either
argument is malformed, before returning a QPair of the arguments to the caller.

Chapter 3

[63]

The remaining code actually performs the arithmetic, signaling that a computation
has occurred when the operation is complete. For example, take the plusClicked
slot:

void MainWindow::plusClicked()
{
 Arguments a = arguments();
 emit computed(a.first + a.second);
}

This obtains the arguments from the input lines using the arguments function,
computes the sum, and then emits the computed signal with the summed value.
Because we connected the computed signal to the showResults slot, this triggers
a call to showResults, which creates the ResultDialog object if necessary, and
shows the dialog with the computed result. The minusClicked, timesClicked,
and divideClicked methods are all similar.

Learning more about Qt GUI widgets
There are whole books written about programming with the Qt GUI widget set:
it's a very rich widget set that includes just about everything you'd need to build the
average Macintosh, Windows, or Linux application, and has the advantage that the
UI controls are familiar to most computer users. To explore further, see the
Qt documentation at http://bit.ly/17stfw3.

Code interlude – Qt Quick and QML
syntax
Most of the programming you do at the lowest level is imperative: you describe
how an algorithm should work ("take this value and square it", "search for the first
occurrence of this string and replace it", "format this data this way", and so forth).
With Qt Quick, your programming is largely declarative: instead of saying how,
you say what. For example, in C++ with Qt, we might write code like this to draw
a rectangle:

QRect r(0, 0, 16, 16);
QPainter p;
p.setBrush(QBrush(Qt::blue));
p.drawRect(r);

Designing Your Application with Qt Designer

[64]

This code creates a 16 x 16 pixel rectangle, allocates a QPainter object that does the
drawing, tells the painter that its brush should be colored blue, and then tells the
painter to draw the rectangle. In QML, I'd simply write the rectangle:

import QtQuick 2.0
Rectangle {
 width: 16
 height: 16
 color: "blue"
}

The difference is obvious: I am just saying that there is a blue rectangle that's 16 x 16
pixels. It's up to the Qt Quick runtime to determine how to draw the rectangle.

Qt Quick's underlying language is QML. It is based heavily on JavaScript, and in fact,
most things that you can write in JavaScript you can also express in QML. Expression
syntax is essentially unchanged: assignments, arithmetic, and so forth are all the
same, and the name-value system is functionally the same, although object frames
may be preceded by a type declaration (as you see with the Rectangle example that
I just showed you).

A key exception to the "what works in JavaScript works in QML" rule
is the lack of a document object model (DOM) and things like the
document root for global variables because there's no root context or
DOM on which other things hang. If you're porting a web application
to QML, be prepared to refactor those parts of your application's
architecture.

Objects in QML must be parented in the fashion of a tree; each QML file must
contain an encapsulating object, and then can have child objects that have child
objects. However, there must be a single root for the hierarchy at the top of the file.
Often, this root is a rectangle, which draws a base rectangle on which its children are
presented, or an item, which is a container for a more complex user interface element
that doesn't actually draw anything. Each item may have a name, which is stored in
its id property.

Most visible QML items can have states; that is, a collection of properties that
apply when a particular state is active. This lets you do things such as declare the
difference between a button's dormant and pressed state; pressing the button just
toggles between the states, and the button's color, shadow, and so on can all change
with you, and there is no need to change each individual property.

Chapter 3

[65]

A key concept in QML that's not present in JavaScript is that of binding: if two QML
object properties share the same value, changing one changes the other. Binding
couples values with notifications about values is similar to how references work in
C++, or how pass-by reference works in other languages, but this happens in QML
at the level of the variable name being referenced. This is very handy in coding
things such as animations, because you can use the value of one object as the value
for another object, and when the underlying value changes in one place, both objects
are updated.

QML files can depend on each other, or include files of JavaScript for business logic.
You've already seen one example of this at the top of every QML file: the import
directive instructs the runtime to include the indicated file and version, so when
I write import QtQuick 2.0, the runtime finds the declaration of the QtQuick
module Version 2.0 and includes its symbols when parsing the file. This is how you
can encapsulate functionality. QML files in your project are included by default,
while you can also include JavaScript files and assign them to a specific JavaScript
variable. For example, we could have a JavaScript file calculatorLogic.js that
implements all of the functionality of my calculator, and in the QML, write:

import QtQuick 2.0
import "calculatorLogic.js" as CalculatorLogic
Item {
 // someplace in code
 CalculatorLogic.add(argument1, argument2);
}

The initial import loads JavaScript and assigns its value to the QML object
CalculatorLogic; I can then dispatch methods and access properties of that
object as if it were any other QML object.

Qt Quick declares a number of basic datatypes; these match closely with the
datatypes you find in Qt when writing C++ code, although the syntax can differ.
Some of the most important types you'll encounter are:

•	 A point with the x and y properties
•	 A rectangle with the x, y, width, and height properties
•	 A size with the width and height properties
•	 A color, which is a quoted string in HTML RGB notation or a named color

from Qt's lexicon of colors (most colors you can think of have names in QML)

Designing Your Application with Qt Designer

[66]

•	 A 2D, 3D, or 4D vector
•	 Basic types including Boolean values, strings, integers, and floating-point

numbers

There are also a lot of visible types for user interface construction; in this chapter,
there's only room to touch on a few. For a detailed list of all QML types and the
documentation about those types, see http://bit.ly/17stfw3.

Creating Qt Quick applications in
Qt Designer
In Chapter 1, Getting Started with Qt Creator, you gained basic familiarity with the
Qt Designer for Qt Quick applications. Let's take another look before we recreate
our calculator app in QML. The next screenshot shows the Qt Designer for the
Qt Quick window:

The Qt Designer for Qt Quick

Chapter 3

[67]

Working from the left again, we have the following components:

•	 The view selector, showing that the Qt Designer view is active
•	 The object hierarchy for the file being edited, showing the parent-child

relationship between visible items in that file
•	 Below the object hierarchy is a palette of the items you can drag out onto the

QML editor pane
•	 Next to the object hierarchy is a summary of the states for the object
•	 Below the summary of states is the object editor for the QML file
•	 Finally, there's a property editor that lets you adjust the properties of the

currently selected QML item

Frankly, I find it easier to just write QML than to use the
designer. The syntax takes a little getting used to, but what
the designer is good for is previewing the QML you've
written by hand and making minor adjustments to its layout.

Speaking of layout, before we see our sample code in detail, it's worth noting that
QML has a rich dynamic layout system. Visible items have an anchor property,
and you can anchor an item's sides against that of its neighbors or the parent view.
You saw this briefly in Chapter 1, Getting Started with Qt Creator, where we made
MouseArea as big as its parent. We'll also use that to control the layout of
the calculator argument input lines and operator buttons.

Start making our sample code now by choosing New File or Project… from the
File menu, and walk through the wizard to create a Qt Quick 2.0 application.
Name your application QtQuickCalculator.

Creating a reusable button
Our calculator has a button for each operation. While we could make each button a
separate rectangle and MouseArea, it's far easier to make a single QML button that
encapsulates the behavior of a button, including the change in appearance when you
press on it, the placement of the button label, and so forth.

Designing Your Application with Qt Designer

[68]

Create a new QML file by right-clicking on the project and choosing Add New…,
then from the Qt items, choose QML File (Qt Quick 2). The button is a rectangle
that contains a second rectangle, a Text label for the button, and a MouseArea region
that handles button clicks. Name the file Button.qml, and edit it so that it reads as
follows:

import QtQuick 2.0

Rectangle {
 id: button
 width: 64
 height: 64

 property alias operation: buttonText.text
 signal clicked

 color: "green"

 Rectangle {
 id: shade
 anchors.fill: button;
 color: "black"; opacity: 0
 }

 Text {
 id: buttonText
 anchors.centerIn: parent;
 color: "white"
 font.pointSize: 16
 }

 MouseArea {
 id: mouseArea
 anchors.fill: parent
 onClicked: {
 button.clicked();
 }
 }

 states: State {
 name: "pressed"; when: mouseArea.pressed == true
 PropertyChanges { target: shade; opacity: .4 }
 }
}

Chapter 3

[69]

Working from the top of the file code:

•	 Within the scope of this file, the button's ID is simply button.
•	 It's 64 pixels in both width and height.
•	 The button has a single property configurable by its clients, the operation

property. That property is actually an alias, meaning it's automatically setting
the value of the buttonText.text property instead of being a separate field.

•	 The button emits a single signal, the clicked signal.
•	 The button's color is green.
•	 There's a rectangle that fills the button that is colored black, but has opacity

of zero, meaning in normal use it's not visible, it's transparent. As the button
is pressed, I adjust the opacity of this rectangle, to shade the button darker
when it's being pressed.

•	 The text label of the button is 16 points in size, colored white, and centered
in the button itself.

•	 The MouseArea region that accepts clicks for the button is the same size as
the button and emits the clicked signal.

•	 The button has two states: the default state, and a second state pressed that
occurs when the mouseArea.pressed property is true (because you are
pressing the mouse button in the mouse area). When the state is pressed,
I request a single PropertyChange event, changing the rectangle's opacity
a bit to give a shadow over the button, darkening it.

You can actually see the two states of the button if you enter the Qt Designer (see the
following screenshot). A state is just a name, a when clause indicating when the state
is active, and a collection of PropertyChanges indicating what properties should
change when the state is active. All visible QML items have a state property, which
is just the name of the currently active state.

The states of the button

Designing Your Application with Qt Designer

[70]

Note that QML uses signals and slots similar to Qt in C++, but there's no emit
keyword. Instead, you declare the signal directly using the signal keyword
and the name of the signal, and then you invoke the signal as if it were a function
call. For each QML item's signal, the slot is named on followed by the signal name;
for example, onClicked, onPressed, and so on. Thus, when we use the button, we
write an onClicked handler for the clicked signal.

The calculator's main view
Go back to the editor and edit main.qml directly. We're going to declare our input
lines, result line, and four operation buttons directly in code; you can do much of the
same with the designer if you'd prefer, and then edit the code to match the following:

import QtQuick 2.0

Rectangle {
 width: 360
 height: 200
 color: "grey"

 TextInput {
 id: argument1
 anchors.left: parent.left
 width: 160
 anchors.top: parent.top
 anchors.topMargin: 10
 anchors.leftMargin: 10
 anchors.rightMargin: 10
 text: "2"
 font.pointSize: 18
 }

 TextInput {
 id: argument2
 anchors.right: parent.right
 width: 160
 anchors.top: parent.top
 anchors.topMargin: 10
 anchors.leftMargin: 10
 anchors.rightMargin: 10
 text: "2"
 font.pointSize: 18
 }

Chapter 3

[71]

 Text {
 id: result
 anchors.left: parent.left
 anchors.right: parent.right
 anchors.top: argument2.bottom
 anchors.topMargin: 10
 anchors.leftMargin: 10
 anchors.rightMargin: 10
 text: "4"
 font.pointSize: 24
 }

 Row {
 id: buttonRow
 anchors.bottom: parent.bottom
 anchors.horizontalCenter: parent
 anchors.bottomMargin: 20
 spacing: 20
 Button {
 id: plusButton
 operation: "+"
 onClicked: result.text =
 parseFloat(argument1.text) + parseFloat(argument2.text)
 }

 Button {
 id: minusButton
 operation: "-"
 onClicked: result.text =
 parseFloat(argument1.text) - parseFloat(argument2.text)
 }

 Button {
 id: timesButton
 operation: "*"
 onClicked: result.text =
 parseFloat(argument1.text) * parseFloat(argument2.text)
 }

 Button {
 id: divideButton
 operation: "/"
 onClicked: result.text =
 parseFloat(argument1.text) / parseFloat(argument2.text)
 }
 }
}

Designing Your Application with Qt Designer

[72]

The view has two TextInput lines, a read-only text result line, and then the
operation buttons, wrapped in a Row item to give them a horizontal layout.
The base view for the calculator is grey, and is in a window 360 × 200 pixels.
The controls are positioned as follows:

•	 The first input line is anchored to the top left of the parent window,
with margins of 10 pixels. It's 160 pixels long and the default height for
an 18-point TextInput field.

•	 The second input line is anchored to the right side of the parent, with a
margin of 10 pixels at the top and right. It's also 160 pixels long, and the
default height of an 18-point TextInput field.

•	 The result input line's top is anchored to the bottom of the input line, and to
the left of the parent rectangle. It also has 10 pixels of margins on each side.

•	 The buttons are spaced 20 pixels apart in a Row item that's anchored to the
bottom of the parent.

These anchors let the view reflow nicely if you resize the application window;
the input lines spread across the width of the window, and the button bar on the
bottom moves down as the window enlarges.

Each of the buttons has a click slot that obtains the floating-point interpretation
of each of the input lines and performs the appropriate arithmetic operation.
They're each instances of Button, the QML class I showed you in the previous
section. Note the use of the JavaScript function parseFloat in the onClicked
handlers: as you'd expect from what I mentioned before, there's support for the
functions in the JavaScript runtime in QML, so we can just invoke JavaScript
functions directly.

Chapter 3

[73]

The following screenshot shows the completed calculator application. Note, when
running the app, if you mouse over a button and press down, you'll see the shading
darken (this isn't shown in the screenshot). This reflects the two states in the button
that I showed you in the previous section:

The completed Qt Quick calculator application

Learning more about Qt Quick and QML
Qt Quick was designed to create fluid applications that don't have a lot of deep
widget complexity. Media hubs, photo viewers, phone dialers, web browsers,
and other sorts of applications that don't need to match the look and feel of the host
platform (or are on embedded systems where the host platform is all written in Qt
Quick) are good examples of applications suiting the Qt Quick paradigm. For more
information about Qt Quick with a plethora of examples that show you the breadth
and power of the platform, see http://bit.ly/16ULQ4V.

Designing Your Application with Qt Designer

[74]

Summary
Qt comes with not one, but two complementary GUI toolkits: Qt GUI, which
takes a traditional widget-based approach to GUI development, and Qt Quick,
which provides a declarative approach better-suited for platform-agnostic user
interfaces for media boxes, some cell phone applications, automobile dashboards,
and other embedded environments. For both, Qt offers Qt Designer, a drag-and-drop
environment that lets you construct, configure, and preview your user interface as
you build your application.

Core to Qt is the notion of signals and slots, Qt's answer to callbacks and events for
handling the late-binding required of today's GUI applications. Qt objects can emit
signals, which are type-safe function declarations, and other objects can connect to
those signals, triggering method calls when the signals are emitted.

In the next chapter, you'll take a break from learning about Qt Creator and graphical
user interface development to focus on one key aspect of application development:
localization. I'll show you how to use Qt Linguist and Qt's localization functions to
localize your application.

Localizing Your Application
with Qt Linguist

Localization is an important, yet commonly neglected part of software development
today. Most authors of applications, whether those applications are commercial or
open source, have hopes to capture a large number of users for their application.
Increasingly, this means supporting multiple languages in multiple locales; often
needing support for multiple languages in one locale (think of French and English
co-existing in Canada).

Qt has long had a framework for making applications easy to localize. With tools
that help you avoid hardcoding strings in your application and a GUI named Qt
Linguist to help manage translation, Qt eases the burden of localization throughout
your application development cycle. In this chapter, we will look at Qt's strategy
for localization, discussing the three tools (lupdate, lrelease, and Qt Linguist) Qt
provides and how to use them, along with what you need to do as you write your
application to take advantage of Qt's localization framework.

Understanding the task of localization
Localizing your application has several phases, which typically overlap throughout
a project. These phases are:

1.	 As you write your application, you place strings to localize your application
in a specific way so that Qt can identify the strings as needing localization.

2.	 Periodically, you extract all the strings in your application and give them
to translators to translate.

3.	 Translators provide translations for the strings in your application.
4.	 You compile translation files with the translated strings for each language

you want to support.

Localizing Your Application with Qt Linguist

[76]

Qt provides four tools to facilitate these phases:

•	 The tr and qsTr functions for C++ and QML let you identify the strings in
your application that require localization

•	 The lupdate command generates a list of the strings that need localization in
your application

•	 Translators use Qt Linguist to provide translations of the strings in your
application

•	 The lrelease command takes the translated strings from Qt Creator and
packages them in a format for your application to consume

The following figure shows how these phases interact:

tr(“hello world”);
tr(“this is a test”);

qsTr(“here’s a string in
QML”);

Qt Linguist

lupdate

Irelease

The lupdate/Linguist/lrelease cycle

Software development is iterative, and localization is no exception. Small projects
may prefer to do the localization just once, or perhaps twice, waiting until the
application is nearly done before submitting the application strings for localization.
Larger applications, or larger companies with a dedicated staff of translators, may
prefer a more iterative approach, going through the localization cycle several times
throughout application development. Qt supports both the models.

Marking strings for localization
All the way back in Chapter 1, Getting Started with Qt Creator, I told you to always
mark your strings for localization using the tr and qsTr functions: tr for C++ and
qsTr for QML strings. Doing so has two key advantages for you. First, it enables
Qt to find every string that needs localization. Second, if you install a Qt translator
object in your application and provide a translation file, the strings you wrap with
these functions are automatically replaced by their localized equivalent.

Chapter 4

[77]

Let's examine the use of tr in more detail. All Qt objects that include the Q_OBJECT
macro in their declaration include the tr function. You've seen it with one argument,
as shown in the following line of code:

button = new QPushButton(tr("&Quit"), this);

The leading & in the string isn't for the tr function, but for the keyboard accelerators;
you can prefix a letter with & and it gets the default system (Alt for Windows,
command for Apple, and Control for Linux). The tr function uses the string you pass
as the string in the user interface if no translated version of the string appears in the
application's current translation table, or uses the string in the current translation
table if one exists.

The tr function can take a second argument, a disambiguation context that tr uses
for the same string that may require different translations. It can also handle strings
with plurals, as shown in the following line of code:

tr("%n item(s) replaced", "", count);

Depending on the value of count and the locale, a different string is returned. So, a
native English translation might return "0 items replaced", "1 item replaced", "2 items
replaced", and so on, while a French translation could return "0 item remplacé", "1
item remplacé", "2 items remplacés", and so on.

The qsTr function in QML works similarly, but it does not have the flexibility that
the tr method has for disambiguation or handling plurals.

Localizing your application with Qt
Linguist
Once you've marked your strings using tr or qsTr, you need to generate a table
of those strings for Qt Linguist to localize. You can do this using the lupdate
command, which takes your .pro file and walks your sources looking for strings to
localize, and creates an XML file for Qt Linguist of the strings you need to translate.
You'll do this once for each language you want to support. When doing this, it's best
to name the resulting files systematically; one way to do that is to use the name of
the project file, followed by a dash, followed by the ISO-639-2 language code for
the language.

A concrete example is in order. This chapter has QtLinguistExample; I can run
lupdate using a command like this to create a list of strings that I'll translate to
Esperanto (ISO-639-2 language code EPO):

% lupdate -pro .\QtLinguistExample.pro –ts .\QtLinguistExample-epo.ts

Localizing Your Application with Qt Linguist

[78]

Where the –pro file indicates the .pro file that contains the list of sources to scan for
strings to translate, and the –ts argument indicates the name of the translation files
to be written.

You'll need lupdate in your path, of course. How you set your
path will depend on whether you're working on Windows, Mac
OS X, or Linux, and where you've installed Qt. Some installations
of Qt may update your path automatically, while others may not.
On my Windows machine, for example, I find lupdate at C:\
qt\5.1.0\msvc2012_64\bin\lupdate.exe.

The .ts file is an XML file with tags to indicate the strings to translate their context
in your application's source code, and so forth. Qt Linguist will save the translations
to the QM file as well, but don't worry, lupdate is smart enough not to overwrite
existing translations if you run it again after providing some translations.

Qt Linguist is a GUI application; when you start it you'll see a screen very similar to
the next screenshot:

The Qt Linguist application editing a QM file

Chapter 4

[77]

To begin, you need to open a .ts file you generated by navigating to File | Open, and
choosing a translation file. You'll be prompted for the destination language, and then
you're given a list of the strings it found. You—or your translators—need only to walk
through each string and enter the corresponding string in the translated language. As
you do so, you can see the context of the string in the source code in the right-most
pane; the line of source from which the string was captured is highlighted.

Qt Linguist lets you track which strings you've translated and which still need
translation. The icon to the left of each of the strings can be:

•	 A black question mark indicating that a string has yet to be translated
•	 A yellow question mark indicating that the string doesn't pass all of Qt

Linguist's validation tests, but you're ignoring the failures
•	 An exclamation point indicating that the string you've provided doesn't

pass Qt Linguist's validation tests
•	 A yellow checkbox indicating that you've provided a translation, but Qt

Creator may have found a problem with it
•	 A green checkbox indicating that the string has been translated and is

ready to go

Qt Linguist provides some simple validation tests, such as ensuring that strings with
arguments such as printf have the same number of arguments in each translation.

Qt Linguist also supports phrase books; you may be able to download a phrase
book with common strings already localized to the language you're targeting.

At any point, you can generate a translation file for inclusion in your application
by running lrelease. For example, to create one for my Esperanto strings, I'd
use lrelease as follows:

% lrelease .\QtLinguistExample-epo.ts .\QtLinguistExample-epo.qm

This takes the incoming .ts file, and generates a .qm file with the strings. The
.qm files are highly compressed binary files used by Qt directly in the process
of rendering your application.

Localizing Your Application with Qt Linguist

[80]

Including localized strings in your
application
In order to supply translated strings to the tr and qsTr functions in your application,
your application needs to include a QTranslator object to read the .ts files and
replace the strings provided to tr and qsTr with their translated counterparts. We
do this in your main entry point function, as shown in the following block of code:

QApplication a(argc, argv);
QTranslator translator;
bool result = translator.load("QtLinguistExample-epo.qm");
a.installTranslator(&translator);

 // Other window setup stuff goes here

return a.exec();

This code allocates a QTranslator object, and loads the indicated translation file
into the translator before installing it into QApplication. In this example, we're
hardcoding the language to localize to Esperanto.

Note that if you want to support the locale as picked by the system, we might
choose to do it this way:

QString locale = QLocale::system().name();
QTranslator translator;
translator.load(QString("QtLinguistExample-") + locale);

This determines the system locale, and attempts to load the localized string file
for the system's current locale.

For this to work, the .qm files for the application need to be locatable by the
application. They should be in the output directory; one way to do this during
development is to turn off shadow builds in Qt Creator, under Build Settings in
the Projects pane. As you build your application's installer—a platform-specific
task outside the scope of this book—you need to include your .qm files with the
application binary.

Chapter 4

[77]

Localizing special things – currencies
and dates with QLocale
A common thing you may need to do is localize currencies and dates. Qt makes
this easy, although the solution isn't obvious until you've thought about it a bit.

First, you should know about the arg method of QString. It replaces an escaped
number with the formatted version of its argument; if we write:

QString s = new QString("%1 %2").arg("a").arg("b");

Then s contains the string a b. Second, you should know about the toString
method of QLocale, which formats its argument in a locale-specific way.

So, we could write:

QString currencyValue = QString("%1 %2")
 .arg(tr("$")).arg(QLocale::toString(value, 'g', 2)

This uses tr to localize the currency symbol, and the QLocale class's static method
toString to convert the value to a string with the locale-specific decimal separator
(period in the U.S. and Canada, comma in Europe).

Date formatting is similar: the toString method of QLocale has overloads for the
QDateTime, QDate, and QTime arguments, so you can simply write:

QDateTime whenDateTime = QDateTime::currentDateTime();
QString when = QLocale::toString(whenDate);

This gets the current date and time and stores it in whenDateTime, and then makes a
string out of it using the locale's default formatting. The toString method can take a
second argument that determines the output format. It can be one of the following:

•	 QLocale::LongFormat, which uses the long version of month and
day names

•	 QLocale::ShortFormat, which uses the short version of day and
month names

•	 QLocale::NarrowFormat, which provides the narrowest form of
formatting for the date and time

Localizing Your Application with Qt Linguist

[82]

Summary
Localizing applications with Qt is easy using Qt Linguist and the localization
framework in Qt. To use the framework, though, you must mark your strings to
localize with tr or qsTr in your source code wherever they appear. Once you do
so, you can create a source file of strings to translate with Qt Linguist using Qt's
lupdate command, and then provide translations for each string. Once you've
provided the translations, you compile them using lrelease, and then include
them in your application by installing a QTranslator object in your application's
main function and loading the translation table generated by lrelease.

In the next chapter, we will look at another important aspect of software
development Qt Creator supports, which is performance analysis with the
QML Profiler and Valgrind.

Performance Optimization
with Qt Creator

We don't use performance analysis tools every day, but we're glad they're there
when we need them. Commercial tools like the ones that come with Microsoft
Visual Studio or standalone tools such as IBM's Rational Rose Purify can set you
back a pretty pile of change—fortunately, Qt Creator has most of what you need
built-in, or has support for working with open source tools to help you profile the
runtime and memory performance of your application.

In this chapter, we will see how we can perform runtime profiling of QML
applications using the QML performance analyzer, and learn how to read the
report it generates. We then turn our attention to memory performance analysis with
Valgrind using Qt Creator, which is a free option to look for memory leaks and
heap corruption on the Linux platform.

The QML performance analyzer
Qt Quick applications are supposed to be fast, with smooth, fluid user interfaces.
In many cases, that's easy to accomplish with QML; the contributors to QML and
the Qt Quick runtime have put a great deal of effort into creating an environment
that performs well under a wide variety of circumstances. Sometimes, however,
try as you might, you may find that you just can't squeeze the performance that
you'd like out of your application. Some mistakes are obvious, such as:

•	 Doing a lot of compute-intensive tasks between state changes or actions
that trigger drawing operations

Performance Optimization with Qt Creator

[84]

•	 Excessively complex view hierarchies with thousands of elements on the
display at once

•	 Running on very limited hardware (often in combination with the first
two problems)

Knuth famously said that "Premature optimization is the root of all evil", and he's
definitely right. However, there might come a time when you need to measure the
performance of your application, and Qt Creator includes a special performance
analyzer for just this purpose. With it, you can see how much time your application
spends in each QML method, as well as measure critical aspects of your application
that are at the edge of your control, like how long it takes to create your application's
view hierarchy.

Let's take a closer look.

QtSlowButton – a Qt Quick application in
need of performance tuning
Let's analyze the performance of QtSlowButton, a poorly-performing example
program I put together for you in this chapter. QtSlowButton has two QML
components: a button based on the calculator button from Chapter 3, Designing Your
Application with Qt Designer, and a view with buttons you can press. Here's the
implementation of the button:

import QtQuick 2.0

Rectangle {
 id: button

 width: 128
 height: 64

 property alias label: buttonText.text
 property int delay: 0

 color: "green"

 Rectangle {
 id: shade
 anchors.fill: button;
 color: "black"; opacity: 0
 }

Chapter 5

[85]

 Text {
 id: buttonText
 anchors.centerIn: parent;
 color: "white"
 font.pointSize: 16
 }

 MouseArea {
 id: mouseArea
 anchors.fill: parent
 onClicked: {
 for(var i = 0; i < button.delay; i++);
 }
 }

 states: [
 State {
 name: "pressed"; when: mouseArea.pressed == true
 PropertyChanges { target: shade; opacity: .4 }
 }
]
}

Each button simply runs a for loop when you push it; its delay property controls
how many times it cycles through the loop. In addition, each button has a label,
which the button draws in the center of the clickable area.

The main user interface consists of three buttons in a Column region, labeled fast,
medium, and slow, with progressively longer delays:

import QtQuick 2.0

Rectangle {
 width: 180
 height: 360

 Column
 {
 spacing: 20
 Button
 {
 delay: 10000;
 label: "fast";
 }

Performance Optimization with Qt Creator

[86]

 Button
 {
 delay: 100000;
 label: "medium";
 }
 Button
 {
 delay: 300000;
 label: "slow";
 }
 }
}

You can either load the source project that comes with this book for this example,
or you can create a new Qt Quick project and make a button and main view with
this code.

To analyze the application's performance:

1.	 Build the application.
2.	 Choose QML Profiler from the Analyze menu. The application will start,

and Qt Creator will switch to the Analyze view.
3.	 In the application itself, click on each application button a few times. You

will be expected to wait after you click on each button.
4.	 Quit the application.

The QML Profiler uses TCP/IP to make a connection between
the running application and the profiler, by default on port
3768. You may need to tinker with your host's firewall settings
to get things to work correctly. On Windows, be sure to permit
the connection in the Windows Firewall dialog that appears.

The following screenshot shows the Analyze view after running your application.
The QML Profiler has three tabs, and shows the first by default:

•	 The first tab is the timeline, indicating what things happened at what point
through the application, and how long they took

•	 The second tab lists the events the QML application processed, and how
much time was spent in each event

•	 The third tab lists the JavaScript functions the program encountered while
running, and how long the application spent in total to run each function

Chapter 5

[85]

In the following screenshot, I've clicked on the Handling Signal row to expand
the signals the application handled. You can see it handled one signal, onClicked,
a total of three times, and the amount of time spent in each is shown as varying
bars on the graph. Clearly, if the application were doing something that could be
optimized, there'd be an opportunity for performance improvement here:

The Timeline view, showing how much time was spent in my onClicked method

The next screenshot shows a different view of this information, indicating that up
to the limit of numerical accuracy, the application spent all of its measured time in
the onClicked handler for the button: clearly a performance "hot spot" in this
case. Interestingly, every incident of my JavaScript is measured here, including
the $when clause that puts the opaque filter in front of the button when it's pressed.
Looking at the JavaScript view can be very helpful if you need to look at where
things are happening in your application in a broad sense:

The total time spent running different bits of JavaScript in QtSlowButton

Performance Optimization with Qt Creator

[88]

The next screenshot is likely the most interesting for performance geeks, because it
shows the amount of time QML spent for each and every event it handled running
the application. Again, we see the onClicked handler consuming the lion's share
of the processor resources, but other things like the creation of the rectangles for
the view and the variable binding for the state of a push button are shown as
well. Typically, we'll use the JavaScript view to get the broad picture of where the
problems in your application are, while you'll use the Events view to zero in on
specific problems:

The Events view of the QML Profiler, showing each and every event in QtSlowButton

Finding memory leaks with Valgrind
As we discussed in Chapter 3, Designing Your Application with Qt Designer,
you should really get in the habit of using Qt's parent-child relationship when
managing memory for classes of QObject in your application to avoid memory
leaks. In my time writing Qt applications, the only time I've had to deal with
memory leaks was when I didn't do that. In addition, using classes such as
QSharedPointer for pointers that aren't based on QObject is a good idea too.

Sometimes, though, you may introduce a memory leak you can't find on your
own. In that case, a tool such as Valgrind can be a lifesaver; it tracks every memory
allocation and free operation in your application, alerting you when your program
terminates if it hasn't freed all the memory it allocates.

Unfortunately, Valgrind is a Linux-only tool. If you're writing pure Qt code, this
shouldn't be a serious issue for you even if you're developing on Windows or Mac
OS X, because you can port your application to Linux and run it in Valgrind there.
To do that, you'll want to use an application such as VMware Fusion, VMware
Player, Microsoft HyperV, or Parallels to set up a virtual machine running
Linux (I like to use Ubuntu), install Qt Creator, and get your code running there.
(Unfortunately, if you have Windows-specific code or libraries in your application,
this isn't an option.)

Chapter 5

[85]

If you build your application for Windows, a commercial leak
detector such as Rational Purify may be an option.

Before continuing, you should make sure you have Qt Creator running under
a Linux distribution, and install Valgrind from http://bit.ly/14QwiQZ or use
your package manager. For example, on Ubuntu, I can install Valgrind with the
following command:

sudo apt-get install valgrind

When you use Valgrind, you actually run your application inside of
Valgrind; instead of starting your application, you start Valgrind, which
starts your application.

QtLeakyButton – a Qt C++ application in need
of memory help
The QtLeakyButton application does one thing: it presents a button that when
clicked, allocates 512 KB of RAM. The following is the code (you can either run the
sample that accompanies this book, or create a Qt GUI application with a single
button and a label and use this code for your MainWindow class):

// mainwindow.h
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

Performance Optimization with Qt Creator

[90]

public slots:
 void leakPressed();

private:
 Ui::MainWindow *ui;
 int m_count;
};

#endif // MAINWINDOW_H

// mainwindow.cpp

#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow),
 m_count(0)
{
 ui->setupUi(this);
 connect(ui->leakButton, SIGNAL(clicked()),
 this, SLOT(leakPressed()));
}

MainWindow::~MainWindow()
{
 delete ui;
}

void MainWindow::leakPressed()
{
 void *p = new char[512 * 1024];
 m_count++;
 ui->leakCount->setText(QString::number(m_count));
}

The MainWindow class has an integer counter and a ui slot for the instantiated form.
The MainWindow constructor instantiates this form, and then connects the clicked
signal of leakButton to MainWnidow::leakPressed. The leakPressed method just
allocates memory and bumps the counter, updating the counter with the number of
times you've pressed the button.

Chapter 5

[85]

To use Valgrind, we need to add a new run target to your application. To accomplish
this, do the following:

1.	 Click on Projects on the left, and then on Run.
2.	 Click on Add.
3.	 For Name, enter valgrind.
4.	 For Executable, add the path to Valgrind (usually /usr/bin/valgrind).
5.	 For arguments, enter the following:

-q --tool=memcheck --leak-check=full --leak-resolution=low
./<your-app-target-name>

6.	 For Working Directory, enter $BUILDDIR.

Now we can select the Valgrind run target for your application. We need to do this
with the debug build because Valgrind needs the debug symbols in our application
to produce a meaningful report. To use Valgrind, start the application and click on
the button a few times. The Valgrind process outputs information continually,
but most of the output comes after we quit the application.

Valgrind produces a lot of output, which can take some time to sort through.
We're looking for the leak summary, which indicates the number of bytes
definitely lost and indirectly lost. The blocks that are definitely lost are memory
you've allocated and not freed; indirectly lost memory is memory leaked because
it's referred to by another pointer, and the referring pointer wasn't freed. The output
will look something like:

X bytes in 1 blocks are definitely lost in loss record n of m

 at 0x........: function_name (filename:line number)

Here, X indicates the number of bytes that were leaked, and the address of the leaked
block is shown on the second line. The record numbers indicate internal record
numbers used by the application's memory allocator, and probably won't help you
very much.

We should really focus on leaks in our application, because it's possible that Qt may
have leaks of its own. Valgrind supports suppression files, which indicate what leaks
should be ignored; if you can find and download one for the versions of Qt you're
building against, you can include a reference to the suppression file by modifying
the argument line to read:

-q --tool=memcheck --leak-check=full --leak-resolution=low
--suppressions=suppresion.txt ./[your-app-target-name]

Performance Optimization with Qt Creator

[92]

Finding memory leaks in your application is part art and part science. It's a good
exercise to go through periodically during application development, to ensure that
leaks you may introduce are quickly found while you're most familiar with the new
code you're running.

Summary
Qt Creator provides the QML analyzer, which lets you perform runtime analysis
of your Qt applications. You can see a graph in time of how your application is
running, as well as dive into detail about how your application spends its time
drawing, binding to variables, and executing JavaScript.

Qt Creator also integrates well with Valgrind on Linux, letting you look for
memory leaks in your application. Using Valgrind on Linux, you can see blocks
that were allocated but not freed, and more importantly, how big they are and
where in the code they were allocated, giving you a head start in determining why
they were not freed.

In the next chapter, we turn from specific parts of Qt Creator to one of its most
exciting aspects in general: the ability to use Qt Creator to compile and test
applications for mobile platforms such as Google Android.

Developing Mobile
Applications with Qt Creator

Qt and mobile development have a long history. Qt's beginnings included early
releases on Linux Personal Digital Assistants in the late nineties and at the turn
of this century. Since then, it's been ported to a number of mobile environments,
including the mobile variants of Linux that Nokia shipped such as MeeGo, as well
as Symbian. While Symbian and MeeGo have come and gone, Qt's acceptance of
mobile platforms lives on, most recently with support for Android.

In this chapter, we talk a little about writing mobile applications, and then learn
how to set up Qt Creator to write applications for Android. It's worth noting right
at the outset that while we will leverage everything you have learned about Qt
development developing a mobile application, we also need to understand how the
environments that mobile software runs in are different from traditional desktop and
laptop environments, and how to design for those constraints. Once we understand
those differences, writing software for Android with Qt is a snap!

A mobile software development primer
The key difference to remember when developing software for any mobile
platform—such as a cell phone or tablet—is that every resource is at a premium.
The device is smaller, meaning that:

•	 Your user will pay less attention to your application, and use it for shorter
periods of time

•	 The screen is smaller, so you can display less information on the display
(don't be fooled by the high-dot pitch of today's displays: reading 6-point
font on a 4-inch display is no fun, high pixel densities or not)

•	 The processor and graphics processing unit are slower

Developing Mobile Applications with Qt Creator

[94]

•	 There's less RAM and less graphics memory
•	 There's less persistent storage for your application's data
•	 The network is slower, by as much as three orders of magnitude

Let's look at each of these in more detail.

User attention is at a premium
Can you walk and chew gum at the same time? I can't—but many people walk,
chew gum, and use their mobile device all at the same time. (Worse, some even
drive while using their devices!) It's very rare for an application on a cell phone or
tablet to have 100 percent of the user's attention for more than a few minutes at a
time. A good rule of thumb is that the smaller the device, the more likely the user
is to treat it as something to pick up and glance at, or use it while they're doing
something else.

The limited attention your user pays to your application has three key consequences:

•	 Your application must be fast. Mobile devices are no place for extra progress
bars, spinning cursors, or lengthy splash screens.

•	 Your application must be succinct. The best mobile applications show data
on only a page or two, having very flat navigation hierarchies. A common
structure is to have a single screen of information, and a single screen with
preferences that lets you configure what information should be shown
(such as what location for which you're getting the information). Favor clear
iconography over verbose text—if you can't draw, find someone who can,
or buy icons from a site such as The Noun Project (http://bit.ly/1fvBsnu).

•	 Your application must be accessible. Buttons should be big (a good guideline
is that no hit target in your application should be smaller than the pad of
your finger, about a square centimeter), and the text should be bigger,
if possible.

For these reasons, Qt Quick is the better choice for most mobile applications you'll
write. You can create smooth and responsive applications that are visually pleasing
and don't overwhelm your users.

Chapter 6

[95]

Computational resources are at a premium
Mobile devices must carry their power source with them: that means batteries.
While batteries have improved over the last twenty years, they haven't kept up
with Moore's Law; most of the improvements have been on the processor side,
as processors have become smaller and dissipate less heat in the course of a
normal operation.

Nonetheless, mobile devices aren't as fast as desktops or laptops—a good way to
think about it is that the last generation's processor design probably scales well for
mobile devices today. That's not to say that mobile devices are slow, just that they're
slower. Equally important, you can't run the processor or graphics processor at full
tilt without seriously affecting battery life.

Qt—especially Qt Quick—is optimized for low power consumption, but there
are still things you can do to help squeeze the best performance out of your
mobile application:

•	 Don't poll: This is probably the single most important point. Use Qt's
asynchronous signal-slot mechanism wherever possible, and consider
multithreading using QThread, Qt's multithreading environment, if you
need to do something in the background. The more your application sleeps,
the further it prolongs the battery life.

•	 Avoid gratuitous animations: Some animation is both customary and
important in today's applications; well-thought-out animations can help
to orient the user as to where they've come from in an application's user
interface and where they're going. But don't flash, blink, or otherwise
animate just to see pixels move; under the hood a lot has to happen to
move those pixels, and that can eat battery life.

•	 Use the network judiciously: Most mobile devices have at least two radios
(cellular and Wi-Fi); some have more. Accessing the network should be seen
as a necessary evil, because the radios consume power when transmitting
and receiving data. And don't forget data parsing, either: if you're parsing
a lot of data, you're likely running the CPU at full tilt to do the heavy lifting,
and that means lower battery life.

Developing Mobile Applications with Qt Creator

[96]

Network resources are at a premium
I've already warned you about the high cost to the battery for using the network.
To add insult to injury, most mobile devices run on networks that can be up to three
orders of magnitude slower than a desktop: your office desktop may have gigabit
Ethernet, but in many parts of the world, a megabit per second is considered fast.
This situation is rapidly improving, as network operators deploy cellular wireless
networks such as Long Term Evolution (LTE) and Wi-Fi hotspots everywhere,
but it's by no means uniformly available. On a recent trip in California, in the
course of eight hours, my cellular network connectivity throughput ran the gamut
from faster than my cable modem (running at 25 megabits per second) down to the
dreaded megabit-a-second that can make a large web page crawl.

For most applications, you should be fine using the Hypertext Transfer Protocol
(HTTP); Qt's QNetworkAccessManager class implements HTTP and HTTPS,
and using HTTP means that you can build web services to support your backend
in a standard way.

If you're developing a game or a very custom kind of application, you may need
to build a custom protocol. Consider using QTcpSocket or QUdpSocket for your
network protocol, remembering of course that TCP is a reliable protocol, while
with UDP there's no guarantee of your data reaching its destination; reliability is
up to you.

Storage resources are at a premium
Mobile devices typically use all solid-state memory. Although solid-state memory
has come down in price significantly in the last several years, it's still not as cheap
as the rotating magnetic memory that makes up the disk drives in most desktops
and many laptops. As a result, mobile devices may have as little as 8 GB of flash
memory for persistent storage, or if you're lucky, 16 or 32 GB. That's shared across
the system and all applications; your application shouldn't use more than a few
gigabytes at most, and that's only if your user is expecting it—say, for a podcast
application. That should be the sum total of the size of your application, its static
resources such as audio and video, and anything it might download and cache
from the network.

Chapter 6

[95]

Equally important, the runtime size of your application needs to be smaller.
Most mobile devices have between a half GB and 2 GB of dynamic RAM available;
the system shares this across all running applications, so it's important to allocate
what you need and free it when you're done. Qt's memory management system,
which I explained in Chapter 3, Designing Your Application with Qt Designer, and
Chapter 5, Performance Optimization with Qt Creator, comes in handy here.

Finally, don't forget that your graphics textures can eat valuable GPU memory as
well. While Qt manages the GPU for you, whether you're using Qt or Qt Quick, you
can write an application that consumes all of a device's texture memory, making
it difficult, or impossible, for the native OS to render what it needs if it needs to
interrupt your application.

To port or not to port?
To paraphrase the immortal bard, that's the question. With Qt's incredible flexibility
across numerous platforms, the temptation to grab an existing application and port
it can be overwhelming; especially in the vertical markets where you have a piece
of custom software written in Qt for the desktop and a customer who wants
"the same thing" for the latest mobile device for their mobile workers. In general,
the best advice I can offer is to avoid porting UI, and only port the business logic
in an application if it seems well-behaved for mobile devices.

UI ported from the desktop or a laptop environment seldom works well on mobile
devices. The user's operating patterns are just too different: what a person wants to
do while seated at a desktop or laptop is just not the same as what they want or can
do standing up, walking around, or in brief spurts in a conference room, cafeteria,
or café. If you're porting from one mobile device to another, it may not be so bad;
for example, a developer with a Qt application for MeeGo, Nokia's Linux-based
platform, shouldn't have too much of a problem bringing their application to Qt
on Android.

Porting business logic may be a safer bet, assuming it doesn't make heavy use of
the CPU, network, or dynamic or static storage. Qt offers a wrapper for SQLite
through QtSQL, and many enterprise applications use that for local storage.
That's a reasonable alternative for data storage, and most HTTP-based networking
applications shouldn't be too hard on the network layer, as long as they have
reasonable caching policies and don't make too many requests for data too often.
But if the application uses a lot of storage or has a persistent network connection,
it's time to rearchitect and rewrite.

Developing Mobile Applications with Qt Creator

[98]

A word on testing
Testing any application is important, but mobile applications require additional
effort in testing, especially Android applications. There's a wide variety of devices
on the market, and users expect your application to perform well on any device
they may have.

The most important thing you can do is test your application on real devices,
as many of them as you can get your hands on, if you're interested in releasing
your application commercially. While as you will see, the Android SDK used by
Qt Creator comes with an emulator that can run your Android application on
your desktop or laptop, running in an emulator is no substitute for running on the
device. A lot of things are different, from the size of the hardware itself to having a
touch screen, and of course the network connection and raw processing power.

Fortunately, Android devices aren't terribly expensive, and there are an awful lot of
them around. If you're just starting out, eBay or the Google Play Store can be a good
place to shop for an inexpensive used or new device. If you're a student or budding
entrepreneur, don't forget that many family members may have an Android device
you can borrow, or you can use the Android cell phone that you already have.

What and when should you test? Everything and often! On a multiweek project,
you should never be more than a few days away from a build running on a device.
The longer you spend writing code that you haven't tested on a device, the more
assumptions you may be making about how the device will perform.

Be sure not to just test your application in good circumstances, but in bad ones as
well. Network connectivity is a prime example; you should test your error handling
in cases with no network coverage. If you have good network coverage where you're
working, one trick you can use is to put the device in a metal cookie tin or paint can;
the metal attenuates the signal and has the same effect as the signal being lost in the
real world (say, in a tunnel or on the subway).

Setting up Qt Creator for Android
Android's functionality is delimited in API levels; Qt for Android supports Android
level 10 and above: that's Android 2.3.3, a variant of Gingerbread. Fortunately,
most devices in the field today are at least Gingerbread, making Qt for Android
a viable development platform for millions of devices.

Chapter 6

[95]

Downloading all the pieces
To get started with Qt Creator for Android, you're going to need to download a lot
of stuff. Let's get started:

•	 Begin with a release of Qt for Android, which was either part of the Qt
installation you downloaded in Chapter 1, Getting Started with Qt Creator, or
you need to go back and download it from http://bit.ly/13G4Jfr

•	 The Android developer tools require a current version of the Java
Development Kit (JDK) (not just the runtime, the Java Runtime
Environment, but the whole kit and caboodle); download it from http://
bit.ly/14HAaj4, or you may be able to get things to work with Linux using
OpenJDK at http://bit.ly/1deNuTX

•	 You need the latest Android Software Development Kit (SDK), which
you can download for Mac OS X, Linux, or Windows from http://bit.
ly/146nsPl

•	 You need the latest Android Native Development Kit (NDK), which you
can download from http://bit.ly/16UYK50

•	 You need the current version of Ant, the Java build tool, which you can
download from http://bit.ly/18AVIlF

Download, unzip, and install each of these, in this order. On Windows, I installed
the Android SDK and NDK by unzipping them to the root of my hard drive,
and installed the JDK in the default location I was offered.

Setting up the environment variables
Once you install the JDK, you need to be sure that you've set your JAVA_HOME
environment variable to point to the directory where it was installed. How you do
this differs from platform to platform; on a Mac OS X or Linux box, you'd edit your
.bashrc, .tcshrc, or the others; on Windows you'll go into system properties,
click on Environment Variables..., and add the JAVA_HOME variable. The path
should be to the base of the JDK directory: for me, it was C:\Program Files\Java\
jdk1.7.0_25\, although the path for you will depend on where you installed the
JDK and what version you installed. (Make sure you set the path with the trailing
directory separator; the Android SDK is pretty fussy about that sort of thing.)

Developing Mobile Applications with Qt Creator

[100]

Next up, you need to update your PATH variable to point to all the stuff you just
installed. Again, it's an environment variable, and you'll need to add the following:

•	 The bin directory of your JDK
•	 The android\sdk\tools directory
•	 The android\sdk\platform-tools directory

For me, on my Windows 8 computer, my PATH variable includes the following now:

...C:\Program Files\Java\jdk1.7.0_25\bin;C:\adt-bundle-
windows-x86_64-20130729\sdk\tools;;C:\adt-bundle-
windows-x86_64-20130729\sdk\platform-tools;...

Don't forget the separators: on Windows, it's a semicolon (;) on Mac OS X and Linux
it's a colon (:).

At this point, it's a good idea to restart your computer (if you're running Windows)
or log out and log back in to make sure all these settings take effect. If you're on a
Mac OS X or Linux box, you may be able to start a new terminal and have the same
effect (or reload your shell configuration file) instead, but I like the idea of restarting
at this point to ensure that the next time I start everything up, it'll work correctly.

Finishing the Android SDK installation
Now we need to use the Android SDK tools to ensure you have a full version of
the SDK for at least one Android API level installed. We'll need to start Eclipse,
the Android SDK's development environment, and run the Android SDK manager.
To do this, follow the ensuing steps:

1.	 Find Eclipse. It's probably in the Eclipse directory of the directory you
installed the Android SDK in. If Eclipse doesn't start, check your JAVA_HOME
and PATH variables; odds are Eclipse can't find the Java environment it
needs to run.

2.	 Click on OK when Eclipse prompts you for a workspace. This doesn't matter;
you won't use Eclipse except to download Android SDK components.

3.	 Click on the Android SDK Manager button in the Eclipse toolbar (circled in
the next screenshot):

Chapter 6

[95]

The Eclipse SDK, with the Android SDK Manager button circled

4.	 Make sure you have at least one Android API level above API Level 10
installed, along with the Google USB Driver (you'll need that to debug
on hardware).

5.	 Quit Eclipse.

Next, let's see if the Android Debug Bridge—the software component that transfers
your executables to your Android device and supports on-device debugging—is
working as it should. Fire up a shell prompt and type adb. If you see a lot of output
and no error, the bridge is correctly installed. If not, go back and check your PATH
variable to be sure it's correct.

While you're at it, you should developer-enable your Android device, too, so it'll
work with ADB. Follow the steps given at http://bit.ly/1a29sal.

Developing Mobile Applications with Qt Creator

[102]

Configuring Qt Creator
Now, it's time to tell Qt Creator about all the stuff you just installed:

1.	 Start Qt Creator, but don't create a new project.
2.	 Under the Tools menu, choose Options... and then Android.
3.	 Fill in the blanks, as the next screenshot shows. They should be:

1.	 The path to the SDK directory in the directory where you installed
the Android SDK.

2.	 The path to where you installed the Android NDK.
3.	 Check Automatically create kits for Android tool chains.
4.	 The path to Ant; either the Ant executable itself on Mac OS X and

Linux platforms, or ant.bat in the bin directory of the directory
where you unpacked Ant.

5.	 The directory where you installed the JDK (this may be automatically
picked up from your JAVA_HOME directory).

The Qt Creator Android configuration, set with the paths where I installed the various Android components

Chapter 6

[95]

6.	 Click on OK to close the Options window.

You should now be able to create a new Qt GUI or Qt Quick application for Android!
Do so, and ensure that Android is a target option in the wizard as the next screenshot
shows; be sure to choose at least one ARM target, one x86 target, and one target for
your desktop environment:

Android targets in the New Qt Quick Application wizard

Building and running your application
Write and build your application normally. A good idea is to first build the
Qt Quick "Hello World" application for Android, before you go to town and make
a lot of changes, and test the environment by compiling for the device. When you're
ready to run on the device:

1.	 Navigate to Projects (on the left) and then choose the Android for arm kit's
Run Settings.

2.	 Under Package Configurations, ensure that the Android SDK level is set to
the SDK level of the SDK you installed.

3.	 Ensure that Package name reads something like org.qtproject.example,
followed by your project name.

4.	 Connect your Android device to your computer using the USB cable.
5.	 Choose the Android for arm run target, and then click on either Debug

or Run to debug or run your application on the device.

Developing Mobile Applications with Qt Creator

[104]

Summary
Qt for Android gives you an excellent leg up on mobile development, but it's not a
panacea. If you're planning on targeting mobile devices, you should be sure to have
a good understanding of the usage patterns for your application's users, as well as
the constraints in CPU, GPU, memory, and network that a mobile application must
run under.

Once we understand these, all of our skills with Qt Creator and Qt carry over to
the mobile arena. Begin by installing the JDK, Android SDK, Android NDK, and
Ant, and then develop applications as usual, compiling for the device and running
on the device frequently to iron out any unexpected problems along the way.

In our final chapter, we learn a bunch of odds and ends about Qt Creator and Qt in
general that will make software development much easier. Stay tuned!

Qt Tips and Tricks
In the previous chapters, we've discussed what makes Qt Creator a great toolkit for
your software development: how to edit, compile, and debug applications; how to
profile their execution and memory performance; how to localize them for different
regions of the world; and even how to make mobile applications that run on Android
phones and tablets. In this chapter, we will discuss a collection of tips and tricks
you should know about when using Qt Creator and Qt that will have you writing
software like a pro.

Writing console applications with Qt
Creator
Remember the "Hello World" application in Chapter 1, Getting Started with Qt Creator?
That was a console application, about as simple a one as you can write. Recapping
the code, we created a new Qt console application, and in main.cpp we wrote:

#include <QCoreApplication>
#include <iostream>

using namespace std;

int main(int argc, char *argv[])
{
 QCoreApplication a(argc, argv);

 cout << "Hello world!";

 return a.exec();
}

Qt Tips and Tricks

[106]

Any valid C++ is valid in a Qt application, including Standard Template Library
(STL) code. This is especially handy if you need to write a small tool in C++, and
haven't learned a lot about Qt yet: everything you know about C++ (and even C,
if you prefer) is accessible to you in Qt Creator.

Although Qt is most widely known as a GUI toolkit, it's worth mentioning that
the QtCore library, part of every Qt application including Qt console applications,
includes a bevy of utility and template classes, such as:

•	 Collection classes, including QList, QVector, QStack, and QQueue for
keeping lists and vectors, and for last-in-first-out and first-in-first-out data
storage

•	 Dictionary classes (otherwise known as hash tables), including QMap and
QDict

•	 Cross-platform file I/O with QFile and QDirectory
•	 Unicode string support with QString

Why will you choose Qt's classes over what straight C++ provides you? There are
a few reasons:

•	 Memory performance: Unlike STL collections, Qt collections are reference
based, and use copy-on-write to save memory. Qt collections typically take
less memory than their STL counterparts.

•	 Iteration: Iterating over Qt collections is safe, with guarded access to prevent
walking off the end of a collection.

•	 Readability: Using Qt code and libraries throughout an application provides
a uniform look and feel that can make the code easier to maintain.

•	 Portability: On some embedded platforms where Qt is available, the STL
may not be. (This isn't nearly the problem it was when Qt was first being
written, however.)

It's worth noting that Qt's collections are often slightly slower than their STL
counterparts: when using a Qt class for data, you're often trading memory
performance for speed. In practice, however, this is rarely a problem.

The QFile and QDirectory classes are worth a special mention, because of one
thing: portability. Even directory separators are handled in a portable way;
directories are always demarcated by a single /, regardless of whether you're
running on Mac OS X, Linux, or Windows, making it easy to write your code in a
platform-agnostic way and ensure that it runs on all platforms. Under the hood, Qt
translates directory strings to use the platform-specific directory separator when
accessing files.

Chapter 7

[107]

Integration with version control systems
Nearly all large projects require some sort of version control to coordinate changes
made to the same files by different users, and ensure that changes to a source base
occur harmoniously. Even a single developer can benefit by using version control,
because version control provides a record of what changed in each file the developer
has changed, and provides a valuable history of the project over time. Qt Creator
supports the following version control systems:

•	 Bazaar (supported in Qt Creator in Version 2.2 and beyond)
•	 CVS
•	 Git
•	 Mercurial (supported in Qt Creator in Version 2.0 and beyond)
•	 Perforce (supporting Perforce Server Version 2006.1 and later)
•	 Subversion

The first thing you need to do is set up version control software for your project.
How to do this depends on the version control system you choose (it may be dictated
by your organization, for example, or you may have a personal preference from
working on past projects), and how you do this differs from system to system, so we
won't go into it here. But, you need to have a repository to store the versions of your
source code, and have the appropriate version control software installed on your
workstation with the appropriate directories containing the version control binaries
in your system's PATH environment variable, so that Qt Creator can find them. It's
important that you access the version control commands from your system's shell
(such as PowerShell or your local terminal prompt), because Qt Creator accesses
them in the same ways.

Once we've done this, we can configure how Qt Creator interacts with version
control by selecting Tools | Options… | Version Control. There are general
configuration options, which apply to whatever version control system you're using,
and then specific options for each flavor of version control that Qt supports. The
general options are:

•	 A script that can be run on any submission message to ensure that your
message is formatted correctly or contains the right information

•	 A list of names and aliases for your source code control system
•	 A list of fields to include in each submission message
•	 The SSH prompt command used to prompt you for your SSH password

when using SSH to access your version control system

Qt Tips and Tricks

[108]

Some version control systems, such as Git and Mercurial, support local version
control repositories. This is handy if you're flying solo on a development project and
just need a place to back up your changes (of course, remember to back up the source
code repository directory as well!). If you're using one of these systems, you can use
Qt to create the local repository directory directly by navigating to Tools | Create
Repository, or by navigating to File | New File or Project wizard on its last page.

If you install and configure a version control system, the various commands
available from that system are added in a submenu to the Tools menu of Qt Creator.
From there, you can:

•	 View version control command output by navigating to Window | Output
Panes | Version Control

•	 View different output from your version control system, letting you see
what's changed in a file you are editing from what's in the repository

•	 View the change log for a file under version control by choosing Log or
Filelog

•	 Commit a file's changes to the system by choosing Commit or Submit
•	 Revert changes to a file by choosing Revert
•	 Update your working directory with the current contents of the version

control system by choosing Update
•	 Access additional per-version-control commands for supporting branches,

stashes, and remote repositories that may also be available

If you're just starting out and need to choose a version control system, perhaps
the best thing to do is to look at the comparison of various systems on Wikipedia
at http://bit.ly/1aVGEUa and get familiar with one.

Personally, I prefer Git for my work, both using local repositories and
in-hosted repositories such as GitHub. It's free, fast, has good support
for branching, and is well-supported by Qt Creator.

Chapter 7

[109]

Configuring coding style and coding
format options
Readable code is crucial, and Qt Creator's default coding style is one that most
people find very readable. However, you may be on a project with different coding
guidelines, or you may just find you can't bear a particular facet of how the Qt
Creator editor deals with code formatting: maybe it's the positioning of the brackets,
or how a switch statement gets formatted. Fortunately, Qt Creator is extremely
configurable. By navigating to Tools | Options… | C++, you can configure how
Qt Creator formats your code, as shown in the following screenshot:

Adjusting code formatting in Qt Creator

Qt Tips and Tricks

[110]

The basic dialog lets you pick popular formatting styles, such as Qt's default format,
or the format used by most GNU code. You can also click on Edit…, which brings
up the Edit Code Style window, as shown in the next screenshot:

Fine-tuning code formatting in Qt Creator

You'll want to begin by copying a built-in style and editing it to suit your tastes;
from the Edit Code Style dialog you can select whether tabs are represented as tab
characters or spaces or tabs and the number of spaces per tab stop, as well as how
line continuations are handled. Each pane lets you adjust specific aspects of code
formatting:

Chapter 7

[111]

•	 The Content pane lets you adjust how class bodies are formatted, including
spacing for public, protected, and private declarations

•	 The Braces pane lets you control formatting as it pertains to braces
•	 The "switch" pane lets you control switch and case statement formatting
•	 The Alignment pane lets you control how code is aligned between

consecutive lines
•	 The Pointer and References pane lets you control spacing around pointer

declarations

It's easy to go crazy with all these options, but I urge you not to: what looks good
at first glance is often an unreadable mess when you see it day after day. If you're
just getting started with Qt, stick with the default formatting, and remember the old
adage To do no harm. When it comes to editing existing code—match the formatting
that's already there.

Building from the command line
Sometimes, you need to build a project from the command line. Maybe you're
working on Linux, and you're just more comfortable there, or you've got a remote
session running to your desktop while you're in a meeting. Or maybe, you want to
automate builds on a build server, and need to know how Qt does its compilation
magic for your builds.

The trick is qmake: Qt's meta-make system that manages generating Make files for the
compiler toolchain you already have installed. The qmake command takes .pro files,
which you first saw in Chapter 2, Building Applications with Qt Creator, and generates
the Make or Nmake file necessary for your toolchain to build your application.

First, be sure that you have your compiler and make utility in your system path: how
you do this varies from development environment to development environment.
Next, be sure that you have commands for Qt's build system in your path—a default
if you've installed Qt on Linux using the package manager, and easily done by
editing your path to include the appropriate bin directory from the Qt tools you
installed on Mac OS X or Windows.

Next, open up a command window and change to the directory containing your
project: your .pro file should be at the root of that directory. Type qmake, and then
either make (if your build system uses make), or nmake (if you're using a Microsoft
Windows toolchain). That's all there is to it!

Qt Tips and Tricks

[112]

Setting Qt Quick window display options
Qt Quick is great for building applications for nontraditional computing
environments, such as set-top boxes or automotive computers. Often, when working
with Qt Quick you'll want an application that doesn't have all the usual windows
chrome (such as the close box) around the contents of the window in these settings,
because you're trying to present a unified user interface based on your Qt Quick
application, rather than the windowing toolkit on the host platform.

You can easily set opacity and windows options (such as whether or not to show a
close box) by editing the main.cpp file in your Qt Quick project. By default, it looks
like this:

#include <QtGui/QGuiApplication>
#include "qtquick2applicationviewer.h"

int main(int argc, char *argv[])
{
 QGuiApplication app(argc, argv);

 QtQuick2ApplicationViewer viewer;
 viewer.setMainQmlFile(QStringLiteral
 ("qml/QtTranslucent/main.qml"));
 viewer.showExpanded();

 return app.exec();
}

This code creates a Qt Quick application viewer, sets its main QML file (the first one
to be loaded) to the indicated file, and then shows it before starting the application's
event loop. Fortunately, the QtQuick2ApplicationViewer object has a setFlags
method that lets you pass Qt::Window flags to the window it initializes to display
your Qt Quick application. These flags include:

•	 Qt::FramelessWindowHint: This indicates that the window should be
borderless (works on Linux systems, but not on Windows)

•	 Qt::Popup: This indicates a pop-up window (you can use this on Windows
to get a nearly borderless window with a slight drop shadow)

•	 Qt::WindowStaysOnTopHint: This indicates that the window should stay on
top of all other windows

•	 Qt::WindowStaysOnBottomHint: This indicates that the window should stay
below all other windows

•	 Qt::Desktop: This indicates that the window should run on the desktop

Chapter 7

[113]

A full list of the flags can be found in the Qt documentation at http://bit.
ly/17NT0sm.

You can also adjust a window's opacity, by using the setOpacity method of
QtQuick2ApplicationViewer.

Say, for example, we want a blue window with no border but a slight drop shadow
at 75 percent opacity to hover over all other windows for my Qt Quick application.
We'd change the QML to read:

import QtQuick 2.0

Rectangle {
 width: 360
 height: 360
 color: "blue"
 Text {
 text: qsTr("Hello World")
 anchors.centerIn: parent
 font.pointSize: 18
 }
 MouseArea {
 anchors.fill: parent
 onClicked: {
 Qt.quit();
 }
 }
}

Note the color: blue declaration for our top-level rectangle. Next, we'd modify
main.cpp to read:

#include <QtGui/QGuiApplication>
#include "qtquick2applicationviewer.h"

int main(int argc, char *argv[])
{
 QGuiApplication app(argc, argv);

 QtQuick2ApplicationViewer viewer;
 viewer.setOpacity(0.75);
 viewer.setFlags(Qt::Popup | Qt::WindowStaysOnTopHint);
 viewer.setMainQmlFile(QStringLiteral("qml/QtTranslucent/main.
qml"));
 viewer.showExpanded();

 return app.exec();
}

Qt Tips and Tricks

[114]

The key lines here come just before viewer.setMainQmlFile: the setOpacity
method sets the main window's opacity, and the setFlags method sets the flags for
the main window to be a pop up that will be on top of all other windows. By running
the application, we can see something like the following screenshot:

A translucent Qt Quick window atop other windows

You can use this trick to come up with a variety of effects for how your Qt Quick
application is displayed.

Learning more about Qt
In the earlier chapters, I pointed you to the Help panel of Qt Creator, as well as the
editor's facility for autocompletion of class members when editing code. The Qt
Creator's Help view is really a subview into Qt Assistant, the full documentation
for all of Qt. Much of this documentation is also on the Web, but it's much faster to
access locally. We start Qt Assistant from the Qt SDK (either from the command line
with qtassistant or by finding it in the installed list of applications), and we can
see something like the following screenshot:

Chapter 7

[115]

Qt Assistant

Qt Assistant is the definitive place to learn about Qt. In the left column you see a
table of contents; the best place to start is with Qt Core, and then either Qt GUI or Qt
Quick depending on whether you want to write GUI or Qt Quick applications. The
main view on the right is just like a browser window, complete with hyperlinks to
related sections.

Also inside Qt Assistant, you can add bookmarks to frequently accessed pages, see
an index of all terms in the documentation, and quickly search for terms using the
search tab in the left-hand column. It's an invaluable resource, and as easy to use as
an e-book.

Finally, if you prefer the Web for learning about things, don't forget Qt's extensive
online documentation, available at http://bit.ly/15F11Ok.

Qt Tips and Tricks

[116]

Summary
Qt and Qt Creator provide a great environment for your application development,
whether you're writing console, GUI, or Qt Quick applications. You can mix and match
standard C++ code with Qt, letting you make the most of your existing skills. When
doing so, you can add in things such as version control and command-line builds
to your tools, giving you the ability to work in large teams and perform unattended
builds of large projects using Qt. Qt also has a great documentation both bundled
with Qt Creator and on the Web. With what you've learned in this book and what's
available, the sky's the limit for your application development goals!

Index
A
About button 54, 56
aboutButton button 53
Add New� option 29
Alignment pane 111
Analyze menu 86
Android

Qt Creator, setting up for 98-103
Android for arm run target 103
Android SDK installation
finishing 100, 101

Ant
downloading 99

application
building 103
creating, Qt Designer used 49-55
debugging 42, 43
dialogs, initiating in 55-59
forms, initiating in 55-59
localizing 75, 76
localizing, with Qt Linguist 77-79
message boxes, initiating in 55-59
running 42, 43, 103

arguments function 63
arguments method 62
auto-suggest 24

B
binding 65
Braces pane 111
breakpoint

about 33
controlling 36, 37
setting 33-35

Build directory path 24
Build menu 24
Build & Run options 41
Build & Run settings 41
Build Settings editor 41
buttonText.text property 69

C
CalculatorLogic object 65
calculator main view 70-72
call stack

examining 39, 40
CDB pane 31
Code Style options 41
Code Style panel 42
coding format options
configuring 109-111

coding style
configuring 109-111

command line
building from 111

command-line debugger
installing 31-33

CONFIG variable 26
console applications

writing, Qt creator used 105, 106
Content pane 111
Continue button 38
Counter class 46-48
Counter object 49
currencies

localizing 81

[118]

D
date formatting 81
dates

localizing 81
Debug button 33
Debug menu 35
Debug view 33
delay property 85
Dependencies panel 42
DEPENDPATH variable 30
Dialog class 59
dialogs

initiating, in application 55-59
divideButton button 52
divideClicked method 63

E
Edit Code Style dialog 110
Edit Code Style window 110
Editor options 41
Editor panel 42
emit keyword 70
environment variables

setting up 99, 100
Events view 88
exec method 57
Expression Evaluator 37

F
factorial function 21-24, 34, 40
File menu 27, 67
File | New File or Project wizard 108
forms

initiating, in application 55-59
Forms folder 51

H
Handling Signal row 87
HEADERS variable 26
height property 65

Hello World application
about 10, 11
compiling 11
running 11
with Qt GUI library 12-15
with Qt Quick 16-19

Help panel 114
HTTP 96
Hypertext Transfer Protocol. See HTTP

I
INCLUDEPATH variable 30
INSTALLS variable 26
Interrupt button 39

J
Java Development Kit. See JDK
JAVA_HOME variable 99, 100
JavaScript view 87, 88
JDK

about 99
downloading 99

L
Label widget 54
leakPressed method 90
LIBS variable 27
Line Edit widgets 51
localization

about 75
strings, marking for 76, 77

localized strings
including, in application 80

Long Term Evolution (LTE) 96
lrelease command 75, 76
lupdate command 75, 76

M
main function 40
MainWindow class 58-61, 89, 90
MainWindow constructor 57, 90
MathFunctions class 22, 24

[119]

MathFunctions directory 30
MathFunctions library 27, 28, 42
MathFunctionsTest console

application 27, 30
memory

examining 37-39
memory leaks
finding, Valgrind used 88, 89

message boxes
initiating, in application 55-59

minusButton button 52
minusClicked method 63
mobile application

performance enhancing, steps 95
mobile application development

about 93, 94
computational resources 95
limited attention, consequences 94
network resources 96
storage resources 96
testing 98
UI, porting 97
user attention 94

mouseArea.pressed property 69

N
Native Development Kit. See NDK
NDK

about 99
downloading 99

New File wizard 58
Noun Project

URL 54
number method 60

O
onClicked handler 87, 88
on_pushButton_clicked method 15
operation buttons 72
operation property 69
Options dialog 42
Options window 103

P
Package Configurations 103
parseFloat function 72
PATH variable 100
plusButton button 52
Pointer and References pane 111
portability 106
project

building 41, 42
Project Management window 23
Projects button 24, 41
Projects pane 23
PropertyChange event 69
Publish option 25
Push Button widgets 51

Q
QCoreApplication task 11
qDebug() function 28
QDict class 106
QDirectory class 106
QFile class 106
QList class 106
QLocale::LongFormat 81
QLocale::NarrowFormat 81
QLocale::ShortFormat 81
QMainWindow class 61
QMap class 106
QMessageBox class 57
QMessageBox object 57
QML 45, 73
QML performance analyzer

about 83, 84
QtSlowButton performance,

analyzing 84-87
QML Profiler 86

tabs 86
QML Profiler tabs

events 86
JavaScript 86
timeline 86

QML syntax
code interlude 63-66

[120]

QNetworkAccessManager class 96
QObject::connect method 48
QPainter object 64
QPair template 61
QPushButton button 48
QPushButton constructor 49
QPushButton object 49
QQueue class 106
QSharedPointer class 88
QStack class 106
qsTr function 76 77
Qt 7, 114, 115
Qt classes features

iteration 106
memory performance 106
portability 106
readability 106

QtCore library 106
Qt Creator

about 7
configuring 102, 103
debugging 31-33
downloading 7-9
Hello World application 10, 11
sample library, creating 21-24
screen 10
setting up, for Android 98-103
URL, for free noncommercial version 8
used, for console applications writing 105,

106
Qt Creator debugging

breakpoints, controlling 36, 37
breakpoints, setting 33-35
call stack, examining 39, 40
memory, examining 37-39
variables, examining 37-39

Qt Creator for Android
all pieces, downloading 99
application, building 103
application, running 103
environment variables, setting up 99, 100
Qt Creator, configuring 102, 103
SDK installation, finishing 100, 101

Qt Creator sample library
about 21
creating 22-24
linking against 27-30

Qt Designer
application resources, using 54
forms, creating in 49-55
main form, creating in 50-54
Qt Quick applications, creating in 66-73
used, for creating application 49-55

Qt Designer Form Class 58
Qt framework key concepts

signals 49
Qt framework, key concepts

signals 46-49
slots 46-49

Qt GUI application logic
wiring 59-63

Qt GUI library
Hello World application 12-15

Qt GUI widgets 63
QtLeakyButton
memory leaks, finding with Valgrind 89-92

Qt Linguist
about 75
used, for localizing application 77-79

Qt Meta-object Language. See QML
Qt project pane 41, 42
Qt Quick

about 16, 73
applications, creating in Qt Designer 66-73
code interlude 63-66
Hello World application 16-19
Qt::Window flags 112
window display options, setting 112-114

QtQuick2ApplicationViewer object 112
Qt Quick applications

calculator main view 70-73
creating in Qt Designer 66, 67
reusable button, creating 67-70

QtSlowButton
performance, analyzing 84-88

QT variable 26
Qt::Window flags

Qt::Desktop 112
Qt::FramelessWindowHint 112
Qt::Popup 112
Qt::WindowStaysOnBottomHint 112
Qt::WindowStaysOnTopHint 112

QVector class 106

[121]

R
ResultDialog class 58
ResultDialog implementation 59
ResultDialog object 62, 63
result field 59
results dialog 58
reusable button

creating 67-69
Row item 72
Run button 53

S
SDK

about 99
downloading 99

Select Required Modules window 22
setFlags method 112
setOpacity method 113, 114
setupUi function 56
setupUi method 59
signal keyword 70
SIGNAL macro 49
signals 46
SLOT macro 49
software development 76
Software Development Kit. See SDK
SOURCES variable 26
Standard Template Library 11
state property 69
strings

marking, for localization 76, 77
sudo apt-get install qtcreator command 8

T
TARGET variable 26
TEMPLATE variable 26
testing 98
Text Editor option 42
TextInput field 72
text property 52
timesButton button 52
timesClicked method 63

toFloat method 62
Tool Button widget 53
Tools menu 31, 42, 102
toString method 81
tr function 76

U
Ui:Dialog class 59
ui field 56
Ui::MainWindow class 56

V
Valgrind
used, for memory leaks finding 88, 89
used, for QtLeakyButton memory leaks

finding 89-92
variables

examining 37-39
version control systems
general configuration options 107
integrating with 107, 108

Vertical Spacer 53

W
when clause 69
width property 65
Windows Firewall dialog 86

X
x property 65

Y
y property 65

Thank you for buying
Application Development with Qt Creator

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PhoneGap 2.x Mobile Application
Development Hotshot
ISBN: 978-1-849519-40-3 Paperback: 388 pages

Create exciting apps for mobile devices using
PhoneGap

1.	 Ten apps included to help you get started on
your very own exciting mobile app

2.	 These apps include working with localization,
social networks, geolocation, as well as the
camera, audio, video, plugins, and more

3.	 Apps cover the spectrum from productivity
apps, educational apps, all the way to
entertainment and games

Boost C++ Application
Development Cookbook
ISBN: 978-1-849514-88-0 Paperback: 348 pages

Over 80 practical, task-based recipes to create
applications using Boost libraries

1.	 Explores how to write a program once and
then use it on Linux, Windows, Mac OS, and
Android operating systems

2.	 Includes everyday use recipes
for multithreading, networking,
metaprogramming, and generic programming
from a Boost library developer

3.	 Take advantage of the real power of Boost and
C++ to get a good grounding in using it in any
project

Please check www.PacktPub.com for information on our titles

Express Web Application
Development
ISBN: 978-1-849696-54-8 Paperback: 236 pages

Learn how to develop web applications with the
Express framework from scratch

1.	 Exploring all aspects of web development using
the Express framework

2.	 Starts with the essentials

3.	 Expert tips and advice covering all Express
topics

Android Studio Application
Development
ISBN: 978-1-783285-27-3 Paperback: 110 pages

Create visually appealing applications using the new
IntelliJ IDE Android Studio

1.	 Familiarize yourself with Android Studio IDE

2.	 Enhance the user interface for your app using
the graphical editor feature

3.	 Explore the various features involved in
developing an android app and implement
them

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
Qt Creator
	Downloading Qt Creator
	Finding your way around Qt Creator
	Your first application – Hello World
	Hello World using the Qt GUI library

	Hello World using Qt Quick
	Summary

	Chapter 2: Building Applications with
Qt Creator
	Getting started – our sample library
	Learning the landscape – the Build menu and .pro files
	Linking against our sample library
	Getting lost and found again – debugging
	Setting breakpoints and stepping through your program
	Fine-grained control of breakpoints
	Examining variables and memory
	Examining the call stack

	The projects pane and building your project
	A review – running and debugging your application
	Summary

	Chapter 3: Designing Your Application with Qt Designer
	Code interlude – signals and slots
	Creating forms in Qt Designer
	Creating the main form
	Using application resources

	Instantiating forms, message boxes, and dialogs in your application
	Wiring the Qt GUI application logic
	Learning more about Qt GUI widgets

	Code interlude – Qt Quick and QML syntax
	Creating Qt Quick applications in
Qt Designer
	Creating a reusable button
	The calculator's main view
	Learning more about Qt Quick and QML

	Summary

	Chapter 4: Localizing Your Application with Qt Linguist
	Understanding the task of localization
	Marking strings for localization
	Localizing your application with Qt Linguist
	Including localized strings in your application
	Localizing special things – currencies and dates with QLocale
	Summary

	Chapter 5: Performance Optimization with Qt Creator
	The QML performance analyzer
	QtSlowButton – a Qt Quick application in need of performance tuning

	Finding memory leaks with Valgrind
	QtLeakyButton – a Qt C++ application in need of memory help

	Summary

	Chapter 6: Developing Mobile Applications with Qt Creator
	A mobile software development primer
	User attention is at a premium
	Computational resources are at a premium
	Network resources are at a premium
	Storage resources are at a premium
	To port or not to port?
	A word on testing

	Setting up Qt Creator for Android
	Downloading all the pieces
	Setting up the environment variables
	Finishing the Android SDK installation
	Configuring Qt Creator
	Building and running your application

	Summary

	Chapter 7: Qt Tips and Tricks
	Writing console applications with Qt Creator
	Integration with version control systems
	Configuring coding style and coding format options
	Building from the command line
	Setting Qt Quick window display options
	Learning more about Qt
	Summary

	Index

