<table>
<thead>
<tr>
<th>No.</th>
<th>Project Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Planar Processed Robots</td>
<td>[Link]</td>
</tr>
<tr>
<td>2</td>
<td>Micro-Cricket Series Robots</td>
<td>[Link]</td>
</tr>
<tr>
<td>3</td>
<td>A Ciliary Motion Based 8-legged Walking Micro Robot Using Cast IPMC Actuators</td>
<td>[Link]</td>
</tr>
<tr>
<td>4</td>
<td>Smart colonoscope system</td>
<td>[Link]</td>
</tr>
<tr>
<td>5</td>
<td>Eco-safe Human-motion-powered MEMS Energy Generator for Mobile Electronic Devices</td>
<td>[Link]</td>
</tr>
<tr>
<td>6</td>
<td>Soccer Playing Micro Robots</td>
<td>[Link]</td>
</tr>
<tr>
<td>7</td>
<td>Automatic Micro Manipulation System for Cell Manipulation</td>
<td>[Link]</td>
</tr>
<tr>
<td>8</td>
<td>Pneumatic climbing robot</td>
<td>[Link]</td>
</tr>
<tr>
<td>9</td>
<td>SCID (Sliding Climbing Inspection Device) Robot</td>
<td>[Link]</td>
</tr>
<tr>
<td>10</td>
<td>Autonomous Mini Robot "Alice 2002"</td>
<td>[Link]</td>
</tr>
<tr>
<td>11</td>
<td>Micromanipulation of the microbe by the Microtools</td>
<td>[Link]</td>
</tr>
<tr>
<td>12</td>
<td>Precise Miniature Robots and Desktop Flexible Production</td>
<td>[Link]</td>
</tr>
<tr>
<td>13</td>
<td>Biomimetic Underwater Microrobot</td>
<td>[Link]</td>
</tr>
<tr>
<td>14</td>
<td>GI tract imaging with potential drug delivery applications</td>
<td>[Link]</td>
</tr>
<tr>
<td>15</td>
<td>Micromuscle --Microrobot</td>
<td>[Link]</td>
</tr>
<tr>
<td>16</td>
<td>Obstacle avoidance</td>
<td>[Link]</td>
</tr>
<tr>
<td>17</td>
<td>Targeted release of drugs, reopening of encumbered arterial ways, the realization of biopsies future applications: medical applications in the blood vessels</td>
<td>[Link]</td>
</tr>
<tr>
<td>18</td>
<td>The Sprawlettes</td>
<td>[Link]</td>
</tr>
</tbody>
</table>
19-Nano- and Micromachines and Motion Nanodevices
Link

20-Development of high-level systems for programming a Scanning Probe Microscope (SPM) as a sensory robot.
Link

21-Artificial Muscles
Link

22-Locating and disabling land mines or detecting chemical and biological weapons
Link

23-MIT Artificial Intelligence Laboratory
Link

24-Self-Assembly of Nanostructures Into Complex Systems
Link

25-Institute for Molecular Manufacturing
Link

26- Zyvex Corporation-Automation Project
Link

27- Microrobotics and Millirobotics Research, University of California, Berkley
Link

28- North Carolina State University-Mobile Micro-Robotics Project
Link

29-Nanomanipulators: An electrostatically driven tweezer
Link

30- A nanorobot capable of operating and detailed sensing within a scanning electron microscope, capable of teleoperation with haptic feedback and nanoscale manipulation.
Link

31- Nanorobots, NEMS, and Nanoassembly
Link

32- Creating structured robotics community
Link

33-Protein Based Nano-Machines for Space Applications
Link

34-Micro Flying Robot
Link

35-Centre for Micro and Nano Systems [Hong Kong]
Link

36-Nanorobotic Manipulations of Carbon Nanotubes
Link

37-Wall climbing Microrobots
38-Multimode (flying/crawling) Insect
39-Flexible micro-robot for the investigation of pipes
40-World’s smallest flying microrobot
41-Ant size robot
42- Ugo
43-LAMI-EPFL, Switzerland
44-MIT Artificial Intelligence Laboratory
45- Seiko Epson Corp
46-Sandia National Laboratories, locating and disabling land mines or detecting chemical and biological weapons
47- University of Minnesota, Center for Distributed Robotics
48- Microrobot North America
49-: Biologically Inspired Robotics Lab, Case Western Reserve University
50-Black Widow
51-Autonomous Mobile Microrobot
52-Micro-Motion Systems
53. Proxy Flyer (6.9gm Micro-helicopter, Brussels, Belgium)
54. Desktop Rapid Prototyping Millirobots (Berkeley, US)
55. Endoscopic micro-capsule (RFSystems Lab, Japan)
 Link

56. Sprawl Robots (Biomimetics Lab, Stanford, US)
 Link

57. Nanorover Technology (JPL & NASA, US)
 Link

58. Building the nanofuture: factory in a microscope
 (Nanotechnology, Europe)
 Link

59. Nasatech (Nanomanipulation products in market, Germany)
 Link

60. Laboratory for Molecular Robotics at USC
 Link

61. MINI-ROBOT RESEARCH
 Link

62. Control of a Micro-Organism as a Prototype Micro-Robot
 Link

63. Micro & Nano Robotics
 Link

64. Center for Robotics and Mechatronics, Micro-Robot Soccer
 Link

65. Micro Walking Robots
 Link

66. Snake-like Flexible Micro-robot PROJET COPERNICUS
 Link

67. Nanorobot
 Link

68. ROBOSEM:
 Link

69. A Ciliary Motion Based 8-legged Walking Micro Robot
 Using Cast IPMC Actuators
 Link

70. Tele-Nano Robotics
 Link

71. Aerospcae Robotics Lab
 Link

72. The Crystalline Atomic Unit Modular Self-reconfigurable Robot
 Link

73. Haptic interface
 Link
74. Tapping Micropositioning Cell
[Link]

75. Advanced Handling, Assembly and Testing Technologies for Mini/Micro System
[Link]

76. Molecular manipulation
[Link]

77. Credit Card Robot System
[Link]

78. ETHZ Institute of Robotics
[Link]

79. Assembly automation with evolutionary nanorobots and sensor-based control applied to nanomedicine
[Link]

80. Microrobotic Actuation Mechanisms
[Link]

[Link]

82. Micromechatronics and Microrobotics Group of the Institute for Process Control and Robotics (IPR)
[Link]

83. Swarm-bots
[Link]

84. Center of Research In Microengineering
[Link]

85. Mecho Gecko
[Link]

86. MIPS Micro-Robot for Endoscopy Applications
[Link]

87. A Microgripper Using Smart Piezoelectric Actuators
[Link 1]
[Link 2]

88. A Micro Robot System for Colonoscopy
[Link]